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Laser melting, such as that encountered during additive manufacturing,

produces extreme gradients of temperature in both space and time, which in

turn influence microstructural development in the material. Qualification and

model validation of the process itself and resulting material produced

necessitate the ability to characterize these temperature fields. However, well

established means to directly probe material temperature below the surface of

an alloy while it is being processed are limited. To address this gap in

characterization capabilities, a novel means is presented to extract subsurface

temperature-distribution metrics, with uncertainty, from in situ synchrotron

X-ray diffraction measurements to provide quantitative temperature evolution

during laser melting. Temperature-distribution metrics are determined using

Gaussian process regression supervised machine-learning surrogate models

trained with a combination of mechanistic modeling (heat transfer and fluid

flow) and X-ray diffraction simulation. Trained surrogate model uncertainties

are found to range from 5–15% depending on the metric and current

temperature. The surrogate models are then applied to experimental data to

extract temperature metrics from an Inconel 625 nickel superalloy wall

specimen during laser melting. Maximum temperatures of the solid phase in

the diffraction volume through melting and cooling are found to reach the

solidus temperature as expected, with mean and minimum temperatures found

to be several hundred degrees less. The extracted temperature metrics near

melting are determined to be more accurate due to the lower relative levels of

mechanical elastic strains. However, uncertainties for temperature metrics

during cooling are increased due to the effects of thermomechanical stress.

1. Introduction

Primary factors for controlling the microstructure, porosity

and residual stress state during additive manufacture (AM) of

engineering alloys include heat input, resulting temperature

and temperature gradients through the component. Heat

treating of components using the heating sources themselves is

also of increasing importance. In response, significant efforts

have been undertaken to characterize temperature profiles

during AM builds in order to guide the build-design process.

These efforts include both thermal and optical imaging of the

specimen surfaces during a build to estimate both surface

temperature and melt-pool shape (Moylan et al., 2014; Fox et

al., 2017; Fisher et al., 2018; Montazeri et al., 2019; Dunbar &

Nassar, 2018; Forien et al., 2020; Ashby et al., 2022), along with

predicting defect formation. While valuable, these character-
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ization efforts only provide information about the tempera-

ture profile at the sample surface, precluding understanding

critical subsurface thermal profiles during initial melting and

subsequent reheating events as layers are added above a

volume of material of interest. Rather, different measurement

modalities are needed to probe an alloy’s evolving micro-

structure during repeated thermal cycling encountered during

the build process.

To address these challenges, new synchrotron X-ray

imaging and diffraction capabilities have been developed that

can characterize structure at rapid time scales (11 s). These

measurements probe the subsurface thermomechanical state

(thermal and mechanical lattice strain) and microstructure

evolution in conditions mimicking a wide range of additive-

manufacturing processes (Kenel et al., 2016; Calta et al., 2018;

Cunningham et al., 2019; Hocine et al., 2020; Oh et al., 2021a,b;

Thampy et al., 2020). During these experiments, average

temperatures of the crystalline phases within a diffraction

volume are estimated from the shifts in diffraction-peak

centroid positions due to a convolution of microstructure

evolution, thermal and mechanical strains. The effects of stress

(elastic strains) and microstructure evolution (such as changes

in local composition or precipitation) are often neglected.

With knowledge of the coefficient of thermal expansion

(CTE) of the material within the applicable range of

temperatures, and assuming equilibrium CTEs are valid

during rapid cooling, thermal strains are mapped directly to

temperatures. While valuable, accuracy of temperatures from

this peak centroid analysis can be compromised due to the

inherent spatial gradients of temperature, mechanical loading

and chemistry during the build process. However, while a

complication for data analysis, information regarding the

spatial gradients of temperature (along with mechanical

strains and chemistry variation) within a diffraction volume is

encoded into each diffraction peak. Unfortunately, the single

projection of X-rays through the diffraction volume during

these experiments prevents the direct inversion or recon-

struction of the temperature field in a tomographic fashion.

Here, we propose a novel path forward to extracting these

temperature data, in which a mechanistic heat-transfer and

fluid-flow model and X-ray simulations provide a framework

for interpreting and analyzing complex experimental

temperature distributions. The simulations are used to create a

collection of reference diffraction patterns (a ‘dictionary’)

representing different thermal states. A strategy is then

adapted from Bamney et al. (2020) to use Gaussian process

regression (GPR) to learn mapping between spatial

temperature distribution metrics within a diffraction volume

(generated from mechanistic modeling) and diffraction peak

shapes. The GPR approach taken here is a transfer learning

process in which GPR is applied to simulated training data

sets, and then the ‘learned’ relationships between spatial

temperature distribution metrics within a diffraction volume

and diffraction peak shapes are transferred to experimental

data sets of interest. The simulation includes both heat-

transfer and fluid-flow modeling coupled with X-ray diffrac-

tion modeling to generate synthetic diffraction data sets. The

accuracy of GPR processes as used here depends on how well

they can predict the temperature-field ‘outputs’ (descriptors of

the temperature fields present) given particular diffraction

‘inputs’ (diffraction data). Since training is performed with

synthetic data sets, the temperature fields used to create the

diffraction data sets are known. As such, the accuracy of the

diffraction modeling is more critical than the heat-transfer and

fluid-flow modeling (although if the heat-transfer and fluid-

flow modeling is accurate, uncertainties will be decreased).

Fortunately, the physics of X-ray diffraction are well under-

stood. When applying the trained GPR models to experi-

mental data, uncertainties reflect differences between the

training and testing data.

2. Material and experiment description

The specimens in both experiment and simulations used in this

work were AM Inconel 625 (IN625) nickel superalloy made

using laser powder bed fusion (LPBF) at the National Insti-

tute of Standards and Technology (NIST), designation PBF-

LB-IN625. The experimental specimen was a thin wall 3 mm in

height along the build direction (zS) by 0.53 mm in thickness

(yS) and 20 mm in length (xS). The experimental specimen was

extracted using electro-discharge machining from a block

(50 � 15 � 6 mm) built in an EOS M290 machine using

manufacturer-recommended build parameters (Son et al.,

2020). The IN625 powder used for the build was attained from

the machine manufacturer EOS. The build layer thickness was

40 mm, with a 110 mm hatch spacing. The laser power and

speed were 285 W and 960 mm s�1, respectively. The inter-

layer rotation during the build of the larger block from which

the thin-wall specimen was extracted was 67.5�. After the build

and prior to the thin-wall specimen extraction, the block was

stress-relief heat treated at 1073 K for 2 h. The IN625 used in

this work was built using the same machine, powders and build

parameters of material utilized for the NIST AM Bench 2018

challenge (Levine et al., 2020). An orientation map measured

using electron backscatter diffraction from the thin-wall

specimen prior to laser remelting is shown in Fig. 1. Crystal

directions are colored with respect to the build direction using

an inverse-pole-figure color map. The microstructure

primarily consists of large grains with dimensions of the order

of 100 mm, interspersed with smaller grains of the order of

10 mm.

In situ diffraction measurements during laser melting were

performed at beamline 1-ID at the Advanced Photon Source

(APS). Fig. 2(a) shows a schematic diagram of the experi-

mental geometry for the measurements including AM IN625

wall specimen, heating laser, incoming X-ray beam, and the

orientations of the sample (S) and laboratory (L) coordinate

systems. In the laboratory coordinate system, the incoming

X-ray beam travels in the�zL direction while the heating laser

was nominally aligned along yL. During X-ray measurements,

the specimen remained fixed in the laboratory coordinate

system as the laser traveled in the xL=xS direction. The angle

between incoming and diffracted X-rays, 2�, is labeled and is

related to the spacing of diffracting sets of lattice planes. The
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incoming X-ray beam was 61.332 keV and was focused verti-

cally by a set of Si sawtooth lenses to dimensions of

50 � 30 mm along xL and yL, respectively. X-ray diffraction

images were measured by a Pilatus3 X CdTe 2M detector

sitting 752 mm downstream of the sample. The detector has

1475 � 1679 pixels and a pixel size of 172 � 172 mm.

Diffraction images were collected with an exposure time of

1 ms and a frequency of 250 Hz throughout the experiment.

Laser melting was performed using an existing in situ LPBF

simulator at the APS. A picture of the simulator in Sector 1-ID

is shown in Fig. 2(b) and more complete system details can be

found in the work of Zhao et al. (2017). The LBPF simulator

uses a ytterbium fiber laser (IPG YLR-500-AC, USA) and an

intelliSCANde 30 for laser motion. Prior to laser melting, the

environment chamber was purged and re-filled with high-

purity argon gas. During testing, the specimen was placed

2.9 mm away from the laser focal plane to create a spot

diameter of 100 mm. During X-ray diffraction measurements,

the laser was rastered over the wall specimen along xL with a

laser power of �120 W and a speed of 0.05 ms�1. This linear

power density (2400 J m�1) is relatively high in comparison

with standard LPBF parameters for IN625. These parameters

were chosen to ensure a relatively large melt pool and

extended temperature gradient through the thickness of the

specimen. Fig, 3 shows the diffracted intensity integrated

azimuthally around the detector (along the diffraction rings)

versus time. In the figure, we can see the shifting of the

diffracted intensity to lower 2� at 125 ms. This shift to lower 2�
is due to an increase in lattice plane spacing as the diffraction

volume is rapidly heated due to the laser passing over it.

3. Methods

In this section, an overview of the various methods employed

to build the dictionary of reference diffraction patterns linked

to underlying thermal distributions is given. A description of

the GPR model, training, and hyperparameter selection used

to learn the mapping between underlying temperature distri-

research papers

J. Appl. Cryst. (2023). 56 Rachel E. Lim et al. � Subsurface temperature quantification during laser melting 3 of 13

Figure 2
(a) A schematic diagram of the experimental setup with ‘S’ superscripts
for the sample reference frame associated with the heat-transfer and
fluid-flow modeling and ‘L’ superscripts for the laboratory reference
frame associated with the laser heating and with the X-ray diffraction
simulations. (b) A photo of the experimental measurement setup used to
collect X-ray diffraction data for developing the temperature-extraction
framework. Marked are (1) the sample holder and sample, (2) the laser
test system, (3) the X-ray area detector, and (4) the incoming beam
direction.

Figure 1
A representative orientation map measured using electron backscatter
diffraction from the thin-wall specimen tested in this work. Crystal
directions are colored with respect to the build direction in the provided
inverse-pole-figure color map.

Figure 3
Evolution of azimuthally integrated diffracted intensity I with time t
during laser melting of the IN625 wall specimen. Each row corresponds to
the diffraction line profile (intensity I versus Bragg angle 2�) for a given
time step, with the color signifying the magnitude of diffracted intensity.
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bution metrics and diffraction line profiles is also provided. As

previously described in the Introduction, as opposed to using

X-ray diffraction data to validate a simulation, we are using

combinations of heat-transfer and fluid-flow modeling, X-ray

diffraction simulation, and machine learning to interpret and

extract information from the experimental data. A schematic

diagram of the various components of our method is shown in

Fig. 4, and the components of the modeling and training parts

are described in more detail in the following subsections. As a

short summary, synthetic X-ray data are generated using

thermal fields output from the mechanistic heat-transfer and

fluid-flow model. We adopt an approach outlined in Fig. 4 in

which pairs of synthetic X-ray line profiles (input) and

underlying temperature metrics (output) are used to train

various GPR surrogate models. Then, the surrogate models,

trained using synthetic data (the source domain), are ‘trans-

ferred’ (Weiss et al., 2016) to analyze experimental data (the

target domain) to determine temperature metrics through,

essentially, comparisons with the previously generated

synthetic data.

3.1. Heat-transfer and fluid-flow modeling

A heat-transfer and fluid-flow model was utilized to calcu-

late the 3D transient temperature and velocity fields during

the laser melting of IN625 specimens. The model is discussed

in detail by Mukherjee et al. (2018a,b) and only the important

features are described here. It was developed using in-house

Fortran code and compiled with an Intel Compiler. The model

calculates the melt-pool size, temperature fields and velocity

fields during the LPBF process, taking the laser parameters,

alloy and environmental gas properties as inputs. The model

considers temperature-dependent thermophysical properties

for both powder and fully dense material. The thermophysical

properties of IN625 required in the model were calculated

using the commercial package JMatPro (https://www.

sentesoftware.co.uk/jmatpro), while the uncertain parameters

such as absorptivity and the power distribution of the laser

beam can be adjusted to match the experimental data on

thermal cycles and deposit geometry. The material parameters

used for the heat-transfer and fluid-flow modeling are
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Figure 4
A flow chart showing the steps included in this work to extract temperature metrics from X-ray diffraction data. Within the source domain, heat-transfer
and fluid-flow modeling is used to inform X-ray diffraction simulations. which are then used to train GPR models. The trained GPR models are then
transferred to the target domain and used to predict temperature metrics from the X-ray experimental data.
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provided in Table 1. The model iteratively solves the equations

of conservation of energy, mass and momentum in a 3D

computational domain consisting of the substrate, power bed,

deposited layers and hatches, and the shielding gas. The

equations are discretized in the computational domain using a

finite difference scheme, and a traveling grid approach is used

to increase computational efficiency. The model provides

accurate results on melt-pool geometry and temperature fields

by considering the effects of the convective flow of molten

metals. While laser melting and resulting temperature distri-

butions within solid specimens are modeled in this work, the

same model is capable of modeling temperature distributions

within loose powder layers (Mukherjee et al., 2018a,b).

Using this model, a series of single laser trace simulations

were performed around conditions similar to the previously

performed in situ synchrotron experiments (Section 4.2). For

all simulations, a unidirectional scan along xS of the laser beam

was used, with the laser-beam direction being �zS. Positive yS

is perpendicular to the laser scanning direction and represents

the direction along the width of the wall specimen. The laser

power and velocity were varied around the nominal experi-

mental parameters (120 W laser power and 50 mm s�1 laser

speed). In total, nine laser-melting simulations were

performed according to the simulation test matrix in Table 2.

Each simulation captured the laser traveling over a 200 ms

interval with 200 ms time steps while temperature fields were

output every 2 ms. The heat-transfer and fluid-flow simula-

tions were performed on the ROAR supercomputer at Penn

State using 40 cores (2.13 GHz) for each simulation, with each

thermal simulation taking 1 h to complete.

3.2. Synthetic X-ray data generation

Each of the nine laser trace simulations were used to

generate a series of time-dependent area-detector X-ray

diffraction patterns using the framework developed by Pagan

et al. (2020). This simulator uses diffraction calculation and

projection algorithms contained in the Python-based HEXRD

software package (Bernier et al., 2011). In the diffraction-

simulation framework, X-ray diffraction is simulated within a

polychromatic (Laue) diffraction framework that employs a

finite-energy bandwidth to capture reoalistic beam conditions.

This method provides benefits over angular-based diffraction

solution methods in conditions where the specimen is not

rotating, such as the single laser-trace experiments described

above. Here, the average X-ray energy and bandwidth (|�E|/

E) were chosen to match the experiment, 61.332 keV and

5 � 10�4, respectively.

In this framework, diffraction events are simulated from

discretized volumes in space, with the spatial positions of each

volume being incorporated into diffracted ray-tracing calcu-

lations. For clarity, we will refer to these discretized volumes as

scattering volumes, while the total volume illuminated by the

X-ray beam is the diffraction volume. Inside each scattering

volume, individual grains (lattice orientations) are inserted

from which diffraction events are calculated. In these

diffraction simulations, the grains have no morphological

features and their orientations are randomly generated. The

thermomechanical state of each scattering volume, and the

accompanying changes in lattice state, can vary spatially. Here,

temperature fields produce spatially varying thermal strain

within the diffraction volume. Matching the experiment, the

simulated diffraction volume is 50 � 30 � 530 mm, while each

scattering volume was 20 � 20 � 20 mm. Each scattering

volume contained two randomly oriented grains simulating

grains with �25 mm equivalent diameter. Each grain contains

1� of lattice misorientation to provide some diffraction peak

broadening.

To model the thermal strain’s effect on the measured

diffraction data, the lattice structure of an embedded grain is

altered by stretching the reciprocal lattice vectors, g, of the

[OK?] grain isotropically (valid for a cubic crystal):

g ¼ ð1� "TÞI � g0; ð1Þ
where g0 is the unstrained reciprocal lattice vector in a crystal,

I is the second-order identity tensor and the thermal strain "T
is given by

"T ¼
ZT

T0

�ðTÞ dT: ð2Þ

The temperature-dependent CTE �(T) used in this work was

measured independently using bulk dilatometry measure-

ments at the Penn State Center for Innovative Sintered
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Table 2
Test matrix showing the nine sets of power–velocity parameters that were
used in the thermal simulation.

P = 100 W v = 0.04 ms�1 P = 100 W v = 0.05 ms�1 P = 100 W
v = 0.06 ms�1

P = 120 W v = 0.04 ms�1 P = 120 W v = 0.05 ms�1 P = 120 W
v = 0.06 ms�1

P = 140 W v = 0.04 ms�1 P = 140 W v = 0.05 ms�1 P = 140 W
v = 0.06 ms�1

Table 1
Properties of Inconel 625 used in the heat-transfer and fluid-flow
modeling.

These properties represent the thermo-physical behavior of the alloy and
affect the thermal cycles. Here, thermal conductivity and specific heat are
taken as temperature dependent and the temperature in kelvin is represented
by T. The properties were calculated using JMatPro.

Physical property Value

Density (kg m�3) 8440
Solidus temperature (K) 1563
Liquidus temperature (K) 1623
Specific heat (J kg�1 K�1) 360.4 + 0.26T � 4 � 10�5T2

Thermal conductivity (W m�1 K�1) 0.56 + 2.9 � 10�2T � 7 � 10�6T2

Latent heat of fusion (J kg�1) 209.2 � 103

Viscosity (kg m�1 s�1) 5.3 � 10�3

Temperature coefficient
of surface tension (N m�1 K�1)

�0.37 � 10�3

Surface tension (N m�1) 1.82
Absorptivity factor 0.3
Emissivity factor 0.4
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Products. Bear in mind, these measurements describe equili-

brium thermal-expansion behavior, which may not exactly

capture thermal expansion during rapid heating and cooling.

The sample used for dilatometry measurements was extracted

via electro-discharge machining from an identically built AM

bulk sample to that used for the in situ diffraction experiments.

Thermal strain "T as a function of temperature determined

from these measurements and used for diffraction simulations

is provided in Fig. 5. The reference lattice parameter from

which g0 were generated was 3.5981 Å. As only crystalline

material will diffract, if the temperature in a scattering volume

exceeds the solidus temperature [1563 K (Pawel & Williams,

1985)], no diffraction events are recorded. For the high-energy

transmission geometry used in the experiment, all diffracting

X-rays have nearly the same path length regardless of whether

they diffract from the upstream or downstream side of the

specimen. As such, absorption is not considered since it will

only scale the total integrated intensity of the diffraction peak

and not change the peak shape.

The laser-trace simulations described in Section 3.1 were

used as input for generating synthetic diffraction images. As

the thermal simulations use a traveling grid formulation for

calculation, thermal fields at each time step were mapped to a

regular grid of scattering volumes with 20 mm spacing in all

three directions. Each thermal simulation was used to

generate three sets of synthetic diffraction data capturing the

evolution of different temperature gradients by placing the

X-ray beam at different portions of the sample. For each

thermal-simulation time series, the center of the X-ray beam

was placed 20, 40 and 60 mm below the top of the specimen,

and separate 2D X-ray diffraction image sets were generated.

In total, 27 sets of X-ray simulations and 2700 diffraction

images were generated for surrogate model training. Once the

2D diffraction patterns were simulated for the entire time

series, each pattern was integrated azimuthally around the

diffraction rings to create 1D diffraction line profiles (intensity

versus 2�). The integrated diffraction line profile data cover 2�
angles ranging from 5–13� and encompasses the first six sets of

lattice planes: (111), (200), (220), (311), (222) and (400). After

integration, background noise corresponding to scattering in

the experimental station was added to the synthetic data. A

comparison of example experimental (blue) and synthetic

(dashed red) diffraction line profiles in the unheated condi-

tions is given in Fig. 6(a) and soon after laser heating in Fig.

6(b). Differences in relative peak heights are likely due to

local texture in the thin-wall sample. Figs. 6(c) and 6(d) show

enlarged views of the 220 diffraction peak in the unheated and

heated conditions, respectively. Relatively extreme peak

broadening and splitting due the temperature gradient present

can be observed in both the experimental and synthetic

diffraction images. However, the goal of the diffraction

simulations is not to exactly match the experimental diffrac-

tion line profiles but to provide a reference dictionary that a

trained GPR surrogate model can utilize to predict a

temperature metric based on ‘similar’ features found in the

data of interest. Each diffraction simulation of a heating time

series at a single beam position took �4 h to complete, with

diffraction calculations from each scattering volume paralle-

lized over 40 cores.

3.3. GPR surrogate model description

Here we utilize a supervised machine-learning technique,

GPR (Rasmussen & Williams, 2006) implemented via scikit-

learn (Pedregosa et al., 2011), to learn mapping between

diffraction line profiles and various temperature metrics in the

diffraction volume. Fig. 7 shows example synthetic diffraction

patterns generated using the mechanistic AM and X-ray

diffraction modeling colored by a temperature metric of

interest in the diffraction volume (maximum temperature,

TMax). The goal of using GPR is to learn these mappings

between line profiles and underlying thermal distributions

such that, with a diffraction line profile, a temperature metric

of interest can be extracted. Again, this places emphasis on the

accuracy of the X-ray diffraction simulation, rather than the

mechanistic heat-transfer and fluid-flow modeling. The

method was recently applied to developing a mapping

between diffraction line profiles and dislocation configurations

within diffraction volumes (Bamney et al., 2020). In addition,

the GPR approach shares commonalities with the Bayesian

Rietveld approach introduced by Ida & Izumi (2011).

GPR takes a Bayesian statistical approach to surrogate

model prediction. The GPR method creates a normal distri-

bution of mapping functions, informed by training data, with

the mean of function distribution serving as a model predic-

tion. The variance of the function distribution can serve as a

confidence bound or to inform where more training data may

be necessary (i.e. where there is high variance). In GPR,

model output predictions (i.e. temperature metrics) are

constructed from linear combinations of transformations of

the input data (i.e. diffraction line profile data). The trans-

formation and linear weights are fitted according to the input

training data and a chosen covariance (kernel) function. In

general, the variance for a given prediction reflects the
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Figure 5
Measured thermal strain "T versus temperature T of IN625 used for the
diffraction simulations. Measurements were made using dilatometry on
the same material as tested in the synchrotron experiment.
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difference between the GPR model input and training data

used to build the model. For example, GPR input (i.e. a

diffraction line profile) that exactly matches the training data

will have a variance of zero, while input that is very different

from the training data (e.g. a new phase is present) will

produce a prediction (i.e. a temperature metric) with a very

high variance. As training data becomes more accurate (or at

least is closer to the model input of interest), variance or

uncertainty is reduced.

The most common kernel function, k, in GPR is the

Gaussian kernel (also often referred to as the squared expo-

nential kernel, exponentiated quadratic kernal or radial basis

function kernel). The kernel dictates the weights used to make

predictions from training-data points. The Gaussian kernel

takes the form

kðxa; xbÞ ¼ �2 exp � jjxa � xbjj2
2L2

� �
; ð3Þ

where xa and xb are input data vectors, and �
2 is the amplitude.

For this work, input data vectors are intensity values in

diffraction line profiles. This kernel includes a length scale, L,

which controls the extent of influence of a data point, affecting

the variance of the function distribution. The Gaussian kernel

is referenced because of its representative behavior and

familiarity with the shape of Gaussian functions. As the

distance between an input vector (xa) and a data point (xb) is

decreased, the weight increases. Conversely, as the distance

increases the weights decay in an exponential fashion.

Here, we employ the related rational quadratic kernel,

which is equivalent to the summation of many exponentiated

quadratic kernels of different length scales:

kðxa; xbÞ ¼ 1þ jjxa � xbjj2
2�L2

� ���

; �> 0; ð4Þ

where � is the relative weighting between large and small

length scales. Accordingly, increasing � reduces the amount of

local variation (slows the weighting decay rate), and, when �
! 1, the rational quadratic kernel converges to the expo-

nentiated quadratic kernel. A range of L and � values were

tested for model training, but the closest fits to the training

data (without overfitting) corresponded to L = 1 and � = 1.

3.4. GPR model training and temperature-metric extraction

Prior to application of the GPR models to the experimental

synchrotron data, the accuracy of GPR predictions were

evaluated using a set of reserved simulations. GPR models

were trained using 26 of the 27 synthetic diffraction data sets,

comprising 2600 images (again, nine laser parameter sets given

in Table 2 with three beam positions each), using a single

processor. The reserved synthetic diffraction time series data

correspond to conditions best matching the experiment:

120 W laser power, 0.05 ms�1 laser speed and placing the

X-ray beam 20 mm below the top of the sample. After GPR

research papers
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Figure 6
Comparison between experimental (blue) and synthetic (dashed red) diffraction line profiles (I versus 2�) from the AM IN625 wall specimens in
representative (a) unheated and (b) heated conditions. Enlarged views of the 220 diffraction peak in the (c) unheated and (d) heated conditions. The 220
peak provides an example of relatively extreme peak splitting due to the temperature gradient presented.

Files: j/xx5027/xx5027.3d j/xx5027/xx5027.sgml XX5027 FA IU-2312/10(28)6 2312/9(28)6 () XX5027 PROOFS J:FA:2023:56:4:0:0–0

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798



surrogate model training and testing of the models against

reserved simulated data, the trained GPR models were

applied to the X-ray diffraction data collected during the

synchrotron experiment. In this process, the diffraction data

collected at each time step are treated as an independent data

point and used as input for the various GPR models. At the

end of the process, various temperature-metric histories for

the diffraction volume probed during the experiment are

generated.

4. Results

4.1. Surrogate model training

Fig. 8 shows predictions of four temperature metrics within

the diffraction volume using trained GPR models (each metric

has its own trained GPR model) that use diffraction line

profiles as input compared with the same temperature metrics

extracted directly from the reserved thermal simulations. The

four temperature metrics are mean TMean [Fig. 8(a)],

maximum TMax [Fig. 8(b)], minimum TMin [Fig. 8(c)], and

median TMedian [Fig. 8(d)] temperatures. As previously

described, for each GPR surrogate model prediction, the

variance of the prediction associated with the normal distri-

bution of the mapping functions can also be calculated and

employed as an uncertainty. In Fig. 8, the uncertainty (square

root of the variance, standard deviation) of the GPR predic-

tion is shown by the red error bars. For each temperature

metric, a linear regression line was fitted to the GPR predic-

tions and is plotted with a black line. A blue dashed line

corresponding to perfect correlation between the GPR model

predictions and the reserved testing data is provided for

comparison. The R2 coefficient of determination of the GPR

predictions is also provided.

As a whole, there is very good agreement between the

reserved testing data and the GPR model predictions. No

aphysical predictions are found across the metrics, such as

predictions of temperature significantly below room

temperature or above the solidus temperature. There is

generally more training and testing data in the lower-

temperature regions due to the laser passing rapidly over the

specimen, leading to generally increased uncertainty at higher

temperatures (see the larger red error bars). This feature is

most notable for the maximum-temperature predictions near

the solidus temperature, which have the largest uncertainties

(of the order of 200 K or 15%). Conversely, the mean-

temperature predictions have the smallest uncertainties (of

the order of 20–40 K or 6–12%), which is not surprising. The

mean temperature is strongly correlated to the point of

highest intensity on the diffraction peak. This can be

contrasted to the minimum and maximum temperatures,

which generally correspond to small volumes of material

contributing to the tails of the diffraction peaks. Again, these

temperature-metric predictions take into account contribu-

tions to peak broadening from the spatial distribution of

temperature within the diffraction volume. In other words, the

hottest and coldest regions may not necessarily correspond to

the most extreme tail positions on the diffraction peak

depending on the spatial location of the diffraction event.

4.2. Application of GPR surrogate models to experimental
data

We have trained a series of GPR surrogate models for

predicting temperature metrics from synthetic diffraction line

profiles. Here we apply the trained models to analyzing

experimental data captured during the synchrotron experi-

ment described in Section 2. Fig. 9 shows the evolution of

mean TMean [Fig. 9(a)], maximum TMax [Fig. 9(b)], minimum

TMin (Fig. 9(c)], and median TMedian [Fig. 9(d)] temperatures

within the diffraction volume versus time. Again, the red error

bars associated with each temperature-metric measurement

correspond to the uncertainty in the extracted quantity as

given by the square root of variance of the GPR prediction.

The point where the moving laser passes over the diffrac-

tion volume is the clear peak in all four metrics. At its highest

point, the prediction for TMax is close to the solidus

temperature for IN625, as expected, since melted material will

research papers

8 of 13 Rachel E. Lim et al. � Subsurface temperature quantification during laser melting J. Appl. Cryst. (2023). 56

Figure 7
Simulated (a) diffraction line profiles (I versus 2�) and (b) 111 diffraction
peaks of IN625 colored by the maximum temperature (TMax) in the
diffraction volume, which was used to generate the pattern.
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Figure 9
The evolving (a) mean TMean, (b) maximum TMax, (c) minimum TMin and (d) median TMedian of the distribution of temperature within the experimental
X-ray diffraction volume with respect to time t, extracted using the trained GPR surrogate models. The red error bars correspond to the square root of
the variance (standard deviation) of the GPR surrogate model predictions.

Figure 8
Comparison of prediction of temperature metrics from trained GPR surrogate models using simulated diffraction data input reserved from model
training. The metrics are the (a) mean TMean, (b) maximum TMax, (c) minimum TMin and (d) median TMedian of the temperature distribution present in the
diffraction volume. The red error bars correspond to the square root of the variance (standard deviation) of the GPR predictions. A linear regression line
has been fitted to the testing data and GPR predictions and is shown with a black line. The dashed blue line corresponds to perfect correlation between
reserved testing data and GPR model predictions.
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not contribute to the diffraction peaks. Similar to the cross

validation with the simulated data, TMax has the highest

uncertainty (largest error bars). We also observe across all

four metrics that the temperature remains relatively high well

after the laser has passed over the diffraction volume (of the

order of 200 K above room temperature). As will be discussed,

this may be due to thermomechanical stress developing within

the specimen upon rapid cooling, as a positive mean stress in

the volume probed will ‘appear’ as an elevated temperature.

As previously described, the uncertainty in the temperature

predictions is related to how close input diffraction line

profiles are to data used for GPR model training. With the

transfer learning approach, if the simulations in the source

domain used to generate the training data are missing physics,

such as the development of stress due to thermal gradients, the

accuracy in the target domain will decrease. Taking this into

account, temperature-metric values closer to the solidus

temperature are probably the most accurate, since at this point

thermal expansion is at its largest and the mechanical stresses

are at their lowest. This will be further discussed in Section 5.2.

5. Discussion

Here, we have described and demonstrated a novel approach

for quantifying temperature distributions within alloys during

extreme heating processes that utilizes in situ synchrotron

X-ray diffraction, mechanistic modeling and X-ray simulation,

and supervised machine learning. The approach was applied to

quantifying temperature metrics in the bulk of an IN625

specimen during high-speed laser melting mimicking AM. The

development of approaches such as that presented in this

article is important for quantifying and controlling tempera-

ture distributions during the AM build process. In turn, this

information can be used to accelerate process certification and

optimization of build routines to control microstructure and

minimize defects. The presented method is a significant

advance from current X-ray diffraction based approaches in

the literature that are only capable of estimating the average

temperature in an illuminated volume (Hocine et al., 2020; Oh

et al., 2021a,b). Usually, analytical functions (e.g. Gaussian or

Lorentzian) are fitted to the diffraction line profiles and

temperature is calculated from shifts of diffraction peaks.

Often, to improve temperature extraction from peak fittings,

experiments are conducted such that melt pools are much

larger and scanning conditions are unrealistic. During this

process, numerous assumptions are made regarding the

temperature distribution present and X-ray interaction with

the sample, which [OK?] increases the uncertainty of the

estimation, most notably that all X-rays are emitted from a

point source and the shape of the function used to fit the

diffraction peak. In addition to decreasing accuracy with these

assumptions, all information about the temperature distribu-

tion in the illuminated volume is lost.

Our effort addresses these shortcomings by directly

accounting for realistic spatial thermal gradients. With these

gradients accounted for, temperature metrics determined

from experimental data will have increased accuracy, and we

can access information about thermal gradients, a major driver

of microstructure formation. Now we will examine the

temperature distribution that was probed during the in situ

measurements. While the method presented is a major

advance forward for bulk temperature quantification during

AM, we will also discuss means to further increase accuracy

and to extend the method to other quantities, such as melt-

pool volume.

5.1. Temperature-distribution evolution

A primary benefit of the approach presented is the ability to

explore the evolving ‘distributions’ of temperature present

within the diffraction volume. As an example, we can analyze

the distribution of temperature within the diffraction volume

during the in situ synchrotron experiment. Fig. 10 shows the

evolution of the mean, maximum, minimum and median

temperature metrics extracted using the various GPR surro-

gate models together. With regards to the temperature

distribution, of most interest is the range (difference of

maximum and minimum) of temperatures in the crystalline

phase throughout the diffraction volume. From the figure, we

can see that there is nearly a 600 K difference between the

maximum and minimum temperatures in the solid phase as the

laser passes over the diffraction volume. We can also see that

the temperature difference remains throughout cooling and is

still over 100 K at the end of measurement. As the mean and

median temperatures are closer to the minimum temperature

than the maximum, we can infer that the bulk of the diffrac-

tion volume remains cooler through thickness, matching

intuition regarding localized melting. Using these data, we can

also begin to establish lower bounds for the temperature

gradient present. As the dimension of the diffraction volume

corresponding to the specimen thickness (530 mm) is signifi-

cantly larger than those defined by the incoming beam (50 and

30 mm), we can assume that the spread of temperature is

primarily along the thickness of the specimen. With this being
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Figure 10
Comparison of the evolution of temperature T metrics with time t,
extracted from the experimental diffraction data using the GPR surrogate
models.
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the case, and the hottest portion of the specimen being in the

center of the specimen, the lower bound of the temperature

gradient can be estimated to be �2250 K mm�1 (600 K/

0.265 mm). With any liquid phase present being significantly

hotter, the gradient will be larger, but a lower bound is of

value for process design.

5.2. Effects of mechanical elastic strain and stress

In Section 4.2, we observed that, in Fig. 9, all temperature

metrics appear to be converging towards predicted tempera-

tures greater than room temperature at the end of data

collection. As mentioned, this may be due to accumulation of

thermomechanical stress within the specimen. Due to large

thermal gradients in the material during laser melting,

mechanical elastic strain and accompanying stress distribu-

tions in the material are formed to maintain deformation

compatibility. These stresses can become large enough to drive

plastic flow and set up residual elastic strain and stress fields

that remain in the material even upon cooling (Wang et al.,

2017; Phan et al., 2019; Bartlett & Li, 2019). In a cubic alloy

such as IN625, tensile hydrostatic stresses and volumetric

elastic strains distort the crystal lattice, and subsequently

diffraction patterns, in the same fashion as increased

temperature does. However, elastic strains during most

mechanical deformation modes have large deviatoric compo-

nents while thermal strains in cubic materials are solely

volumetric. With regards to the diffraction data, heating in the

absence of thermal gradients in cubic materials will cause

uniform contraction or expansion of the diffraction rings.

However, temperature gradients and distributions of thermal

strains give rise to elastic strains and mechanical stresses to

maintain deformation compatibility that, in turn, will distort

diffraction rings into ellipses.

To explore the role of mechanical elastic strain effects on

the temperature predictions, which are not currently included

in the laser melting and diffraction simulations, the anisotropy

of lattice strain around diffraction rings during the experiment

was probed. Fig. 11(a) shows the evolution of average lattice

strains from the first three sets of lattice planes from four

different azimuthal regions around the detector. These regions

are illustrated on a detector image in the inset of Fig. 11(a).

Average lattice strains �"" were first found by fitting Pseudo-

Voigt peaks to the first three sets of lattice planes in each bin

[noting that fits are relatively poor in the high-temperature

region due to peak splitting, Fig. 6(d)]. Lattice strains from

each peak "hkl were then determined from fitted peak centers

2�hkl and Bragg angles calculated from the reference lattice

parameter 2�hkl0:

"hkl ¼
sin ð2�hkl0=2Þ
sin ð2�hkl=2Þ

� 1: ð5Þ

Average lattice strains �"" from each region were calculated as

an intensity-weighted average of the lattice strains from each

peak, calculated as

�"" ¼
P

"hklIhklP
Ihkl

; ð6Þ

where Ihkl is the fitted maximum intensity of each peak. This

averaging of lattice strains from the four different azimuthal

regions assumes that the principal strain directions are

nominally aligned with the sample edges and the sample

coordinate system. The relatively large azimuthal regions were

chosen to increase the number of grains contributing to each

lattice strain measurement. In Fig. 11(a), as the sample cools,

there is a marked deviation in the lattice strains around the

detector, reflecting the development of thermomechanical

stresses in the specimen containing a tensile stress in the xS

direction. None of the lattice strains in any of the regions

become negative, indicating still elevated temperature or a

compressive stress along the beam direction zL (yS). The exact

internal-stress magnitudes cannot be calculated, but the

strains of order 10�3 seen in Fig. 11(a) indicate internal

stresses on the order of several hundred megapascals as the

elastic modulus of AM IN625 is�200 GPa (Wang et al., 2016).

Stresses of this magnitude are a significant fraction of the yield

strength of the alloy [�500 MPa (Nguejio et al., 2019)] and
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Figure 11
(a) Evolution of average lattice strains �"" measured from four different
regions on the detector (shown in inset) through time t. (b) Evolution of
the ratio of the mean and standard deviation (STD) of the lattice strains
from the four different regions.
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may even be sufficient to induce plastic flow. There is also a

spread of lattice strains prior to heating that is most likely due

to stresses imposed during sample mounting.

To examine an approximate measure of the ratio of volu-

metric to deviatoric strains caused by thermal expansion and

mechanical stresses, respectively, the time evolution of the

ratio of the mean and standard deviation of the lattice strains

from the four regions is shown in Fig. 11(b). In regions where

the ratio is high (>5), the strains are dominated by volumetric

(thermal) expansion and the GPR model temperature

predictions are more accurate, but as the ratio gets smaller

(during cooling), deviatoric (mechanical elastic) strains influ-

ence the results to produce inaccurate temperature predic-

tions. This is reflected in the still relatively high temperature

metrics determined from the GPR surrogate models in Fig. 10.

A recent experimental effort (Schmeiser et al., 2021) has

demonstrated that with a large panel area detector and

capturing full diffraction rings, the effects of mechanical

stresses could largely be decoupled from the effects of heating.

Keeping this in mind, the method presented in this work could

be extended to train GPR surrogate models with diffraction

patterns including thermomechanical effects, rather than just

thermal effects. The GPR surrogate models would also need to

be provided with independent diffraction line profiles from

different azimuthal angles around the detector, but this should

be readily possible. If successful, low-temperature measure-

ment accuracy will be significantly enhanced.

5.3. Melt-pool volume estimation

For the extraction of temperature-distribution metrics, the

GPR surrogate models that have been presented are primarily

learning connections between diffraction peak shape and

position with the temperature distributions present in the

illuminated diffraction volume. As has been mentioned, when

a volume of material melts, that volume will no longer

contribute intensity to the measured diffraction peaks. The

total integrated intensity will therefore reflect the volume of

unmelted alloy and, the converse, the relative volume of the

melt pool. To test this idea, a final GPR surrogate model was

trained in the same fashion as described above, but trained to

connect diffraction line profiles to the volume fraction of the

melt pool present. This surrogate model was then provided

with the experimental X-ray data, similar to Section 4.2. Fig.

12 shows the evolution of the melt-pool volume fraction

during the experiment. We can see that the melt-pool volume

fraction has a maximum of 0.3 when the laser passes over the

diffraction volume. With the relatively large laser-beam size

(100 mm) and high power density laser conditions, a melt-pool

volume extending through �30% of the diffraction volume

(150 mm) appears reasonable. While the GPR surrogate model

here is utilizing the drop in intensity in the primary diffraction

peaks to determine the current melt-pool volume fraction,

liquid rings at positions associated with the nth nearest-

neighbor average atomic distances (pair distribution function)

also appear in the data (Waseda & Suzuki, 1972; Iqbal et al.,

2006) With the appropriate liquid-scattering model in the

X-ray scattering simulations (Heinen & Drewitt, 2022), the

accuracy of this GPR surrogate model could be improved. To

even further enhance accuracy, the scattering modeling and

accompanying surrogate model can be modified to include the

effects of background thermal diffuse scattering. While high-

speed X-ray radiography has been used extensively in the

literature to image melt-pool size, diffraction and the

approach presented may provide a complementary means to

characterize sub-surface melt-pool dynamics in alloys in

addition to samples with relatively little density difference

between liquid and solid phases and their minimal radio-

graphic imaging contrast.

6. Summary and conclusions

For the first time, bulk maximum and minimum temperatures

of the solid phase in an engineering alloy (along with

temperature-distribution information) have been extracted

from in situ AM measurements. This was made possible by

using high-fidelity mechanistic and supervised machine-

learning modeling to determine quantities from the experi-

mental data, as opposed to taking a traditional approach of

using experimental data to calibrate the models. The approach

consists of training GPR surrogate models using a combina-

tion of heat-transfer and fluid-flow modeling and X-ray

diffraction modeling. Each surrogate model links diffraction

line profiles to metrics describing the temperature distribution

present within the diffraction volumes including maximum,

minimum, mean and median temperature. The smallest

uncertainties determined from the GPR models are �5% for

the minimum, median and mean temperatures. In contrast, the

largest uncertainty is for the maximum temperature (�15%),

near the solidus temperature. The trained surrogate models

were successfully applied to extracting these metrics from in

situ high-energy synchrotron diffraction data collected during

additive manufacturing (laser melting) of a thin wall of

Inconel 625. Despite the larger uncertainties from the GPR
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Figure 12
Estimated experimental melt-pool volume fraction (VF) versus time t,
determined from the experimental diffraction data using a trained GPR
surrogate model.
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surrogate model output, temperature-metric accuracy is

believed to be greatest in the high-temperature regime and

decreases in the low-temperature regime when applied to

experimental data, as stress develops and distorts the material

present. TheDiscussion described future efforts to account for

thermomechanical stress formation to increase model accu-

racy and extend the approach to extract other information

about the volume probed, including the volume of the melt

pool in the diffraction volume.

7. Data and code availability statement

All data used for this work are available upon reasonable

request. The Python-based diffraction simulation and GPR

training codes are also available upon request.
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