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Superior printed parts using history and augmented machine
learning
Meng Jiang 1,2✉, Tuhin Mukherjee2, Yang Du2 and Tarasankar DebRoy 2✉

Machine learning algorithms are a natural fit for printing fully dense superior metallic parts since 3D printing embodies digital
technology like no other manufacturing process. Since traditional machine learning needs a large volume of reliable historical data
to optimize many printing variables, the algorithm is augmented with human intelligence derived from the rich knowledge base of
metallurgy and physics-based models. The augmentation improves the computational efficiency and makes the problem tractable
by enabling the algorithm to use a small set of data. We provide a verifiable quantitative index for achieving fully dense superior
parts, facilitate material selection, uncover the hierarchy of important variables that affect the density, and present easy-to-use
visual process maps. These findings can improve the quality consistency of 3D printed parts that now limit their greater industrial
adaptation. The approach used here can be applied to solve other problems of 3D printing and beyond.
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INTRODUCTION
3D printing or additive manufacturing (AM) enables one-step
fabrication of intricate metallic parts that cannot be easily made
by other manufacturing processes1–6. Because of its advantages,
metallic parts made by AM are of growing interest in aerospace,
automotive, energy, and other industries7–9. The printed metallic
parts are the fastest-growing sector of AM1. However, AM now
represents only a small portion of the global manufacturing
market because of persistent problems with the consistency and
quality of the printed parts2. Although progress is being made in
overcoming the important problems of AM, it still underperforms
traditional manufacturing processes in quality consistency, espe-
cially in the production of fully dense metallic parts that do not
contain the lack of fusion and other voids1,2.
Several approaches have been undertaken to improve the

density of the printed metal parts by reducing the lack of fusion
voids in powder bed fusion (PBF) as shown in the supplementary
document10–21. For example, dense parts, largely free of internal
voids have been achieved by expensive hot isostatic post-
processing22,23, changing processing variables aimed at making
denser parts by trial and error10–13, and the use of machine
learning using data obtained from previous runs and independent
experiments. Post-processing imposes an extra cost and does not
always eliminate the defects2,3. The optimization of property by
trial and error is tenuous because of the large number of variables.
The evolution of the lack of fusion voids depends on multiple,
simultaneously occurring, complex physical phenomena, and their
mechanistic understanding is not yet fully developed3,4. Therefore,
mechanistic modeling of lack of fusion void formation for different
alloys and process conditions is not always a viable path4. In
contrast, machine learning can reveal the correlation between
various process variables and lack of fusion using experimental
data without the need to understand the mechanisms of their
formation3.
The AM processes enjoy a tremendous advantage over the

conventional manufacturing technologies in connectivity and
communication with computers and the Internet3,24. No other

processing technology has been designed to receive, use, and
transmit digital data like AM. External optical sensors can collect
micron-level detail using cameras and the data can be very useful
for machine learning-based solutions20. As a result, the imple-
mentation of machine learning solutions for AM has received
considerable attention3 to overcome the current issues faced by
AM. Three types of data, real-time data, historical data from the
same AM unit, and literature data have been used to impact all
aspects of the production of metallic parts3. The data and the
machine learning can be used for closed-loop quality control,
optimizing process variables, and expediting part qualification3

without depending solely on the inspection process.
One key requirement for building and deploying traditional

machine learning solutions for defect remediation and other
problems is the need for a large volume of high-quality data3,4.
Many variables affect the formation of defects such as the laser
power, laser spot size, laser scanning speed, preheat temperature,
hatch spacing, layer thickness, shape and size of the powder,
specific heat, thermal conductivity, density, solidus and liquidus
temperatures, and the latent heat of fusion25,26. The number of
data needed to consider the contributions of these 14 variables is
at least 214 (=16,384) using the 2-factor design of experiments27.
The sheer volume of the required data makes such an
investigation challenging. Thus, the number of input variables
needs to be reduced from 14 to a lower value to make the
problem tractable.
An appropriate variable reduction technique that uses a

combination of variables rather than the individual variables is
needed. Augmentation of human intelligence based on the rich
knowledge base of metallurgy and mechanics is needed for this
purpose to construct non-dimensional numbers from raw process
variables and materials properties to achieve this goal28. Several
such non-dimensional numbers may then be correlated with the
part density or other attributes using an appropriate machine
learning framework. The resulting reduction of the variables
makes the problem tractable.
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We implement the augmented machine learning29–31 strategy
and synergistically combine a mechanistic model and historical
experimental data to uncover the conditions necessary to reduce
the lack of fusion void formation in laser powder bed fusion
(PBF-L) (Fig. 1). We analyze one hundred and one independent
experimental data for an aluminum alloy10,32–37, AlSi10Mg,
titanium alloy13,38–44, Ti6Al4V, stainless steel45–47, SS316, and a
nickel alloy48,49, Inconel 718. Based on the previous
work4,12,15,38,49, we identify (see the supplementary document)
five important variables, dimensionless hatch spacing (hatch
spacing/pool width), dimensionless pool depth (pool depth/layer
thickness), dimensionless temperature (peak temperature/liquidus
temperature), Marangoni number, and Fourier number that affect
the lack of fusion defects. We use a well-tested model of heat
transfer and fluid flow in the PBF-L to calculate the five
mechanistic variables. These variables are analyzed using a
decision tree and linear regression to forecast the lack of fusion.
Furthermore, the hierarchical importance of these five mechanistic
variables is determined using three feature selection indexes such
as information gain, information gain ratio, and Gini index.
Here we show that using the augmented machine learning

results, an easy-to-use, verifiable lack of fusion index can be
constructed based on scientific principles. In addition, the

hierarchical influence of the important variables on the lack of
fusion can be uncovered. The engineers can then know which
variables to adjust to minimize the lack of fusion. Furthermore,
process maps could be constructed to select the ranges of
processing conditions to avoid the lack of fusion defects in parts.
These maps were tested with independent experimental data and
are useful for real-time use. In addition, the methodology helps in
materials selection for obtaining fully dense parts and can support
the discovery of new printable alloys.

RESULTS AND DISCUSSION
The mechanistic variables
The lack of fusion voids originate from the inadequate fusional
bonding among the neighboring deposited tracks which are
affected by heat and fluid flow and molten pool geometry. Here
we select five mechanistic variables that capture the combined
influence of process variables and alloy properties on the lack of
fusion defects. The basis for the selection of mechanistic variables
and their effects on the formation of lack of fusion
voids4,12,15,38,49–52 are explained below.
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Fig. 1 Schematic representation of the methodology used. Process variables used in the experiments and the thermophysical properties of
alloys are used in the mechanistic model to calculate the five mechanistic variables that influence the lack of fusion defect formation. These
variables when used to train augmented machine learning algorithms can guide engineers to find out conditions for avoiding the lack of
fusion defects in printed metallic parts. The experimentally observed lack of fusion defect60 is for Inconel 718 made by powder bed fusion.
The panel “Part with defects” is adapted with permission from reference60, Elsevier. The panel “Human intelligence” is adapted with
permission from reference61, Elsevier.
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Dimensionless hatch spacing (H). Lack of fusion void formation is
affected by the dimensions and geometry of the molten pool. For
example, molten pool width determines the extent of fusional
bonding between two neighboring hatches. If two neighboring
hatches are separated by a large hatch spacing, the insufficient
overlap results in gaps between the adjacent tracks. Sound
fusional bonding between two hatches is affected by both the
pool width and hatch spacing. Therefore, a dimensionless hatch
spacing represented by the ratio of hatch spacing to pool width is
considered a mechanistic variable affecting the lack of fusion (Fig.
2a). The pool width is estimated using a heat transfer and fluid
flow model (Methods section). A low value of dimensionless hatch
spacing due to a large molten pool width or a small hatch spacing

ensures good fusional bonding among the neighboring hatches
and can reduce the lack of fusion (Fig. 2a).

Dimensionless pool depth (D). A deep molten pool increases
the extent of remelting of the previously deposited layer and
results in a sound fusional bonding among two successive
layers. In contrast, thick layers reduce the extent of remelting.
Therefore, both pool depth and layer thickness significantly
affect the lack of fusion void formation. The depth of the pool is
estimated using a heat and fluid flow model (Methods section).
Therefore, we consider a dimensionless pool depth indicated by
the ratio between the pool depth and the layer thickness as a
mechanistic variable (Fig. 2b).
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Fig. 2 The five mechanistic variables and their effects on the lack of fusion defect in PBF-L parts. a Dimensionless hatch spacing is
represented by the ratio of hatch spacing to pool width. b Dimensionless pool depth is a ratio of pool depth to layer thickness. Figures a and
b show that the lower dimensionless hatch spacing and higher dimensionless pool depth can reduce the lack of fusion. Figure c shows the
schematic diagram of the PBF-L process. d Marangoni number indicates the intensity of the convective flow of liquid metal inside the molten
pool. A high Marangoni number representing a vigorous flow of liquid metal can reduce the lack of fusion defects. e The dimensionless peak
temperature is represented by the ratio of the peak temperature to the liquidus temperature of the alloy. f Fourier number indicates the ratio
of the rate of heat dissipation to the rate of heat storage. Figures d and e show that a low Fourier number and a high dimensionless peak
temperature can reduce the lack of fusion defect.
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Marangoni number (Ma). The shape and dimensions of the
molten pool that govern the fusional bonding among layers, are
significantly affected by the convective flow of molten material
inside the pool26. Marangoni number (Ma) represents the strength
of convective flow which determines the heat transfer inside the
molten pool and the shape and size of the molten pool2,4. A high
value of Ma indicates a vigorous convective flow50 that can
increase the pool width and improve remelting and bonding with
neighboring tracks to reduce the lack of fusion (Fig. 2d). Therefore,
the Marangoni number is considered a mechanistic variable which
is represented as51:

Ma ¼ � dγ
dT

δΔT
μα

(1)

Where dγ/dT is the derivative of surface tension with respect to
the temperature, δ is a characteristic length which is considered as
the pool width, ΔT indicates the difference between the solidus
temperature of an alloy and the peak temperature inside the
molten pool, μ and α represent the viscosity and thermal
diffusivity of the alloy, respectively. Here, the width of the molten
pool and the peak temperature are estimated using a heat and
fluid flow model (Methods section).

Dimensionless peak temperature (T). A high peak temperature
during PBF-L provides an indirect indicator of a large molten pool
which is favorable for sound fusional bonding among neighboring
tracks. Therefore, PBF-L conditions that provide a high peak
temperature are useful to minimize the formation of lack of fusion
(Fig. 2e). For each experimental condition, the peak temperature is
estimated using a heat transfer and fluid flow model (Methods
section). Therefore, a dimensionless peak temperature, repre-
sented by the ratio of the peak temperature inside the molten
pool (Tp) to the liquidus temperature of alloy (Tl), is used as a
mechanistic variable.

Fourier number (Fo). Fourier number indicates the ratio of the
heat dissipation rate to the heat storage rate. A high value of the
Fourier number represents a fast rate of heat dissipation and a low
rate of heat accumulation both of which result in a small fusion
zone50 and increase the vulnerability to lack of fusion (Fig. 2f).

Fo ¼ α=VL (2)

where α is the thermal diffusivity, V and L are the scanning speed
and pool length. The pool length is estimated using a well-tested
heat transfer and fluid flow model (Methods section).
The five mechanistic variables are affected by the three-

dimensional temperature and velocity fields and the shape and
size of the molten pool. Figure 3 shows that the shape and
dimensions of the molten pool are influenced by the alloy properties
for a given set of process variables. For example, among the alloys
considered, the largest molten pool is achieved for AlSi10Mg, which
has the lowest density and liquidus temperature. The build of IN 718
alloy exhibits the largest two-phase mushy zone because it has a
maximum temperature range between the solidus and liquidus
temperatures. Therefore, the susceptibilities of different alloys to lack
of fusion are different because of the difference in shape and
dimensions of the molten pool.
The alloy properties, process parameters, and the five mechanistic

variables computed corresponding to the one hundred and one
experimental cases are supplied in the supplementary document.
The computed data on the five mechanistic variables are used to find
the hierarchical importance of these variables on lack of fusion as
described below.

Hierarchical influence of mechanistic variables
The hierarchy of the effects of five mechanistic variables on the
lack of fusion is useful to help the engineers identify the proper
conditions to avoid this defect. Their importance is estimated
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Fig. 3 Temperature and velocity fields calculated using the heat transfer and fluid flow model (see Methods section) during PBF-L of
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by the information gain of the five mechanistic variables (Fig.
4a). A variable that has the highest value of information gain is
the most important53,54. The dimensionless hatch spacing and
dimensionless pool depth are the two most influential variables.
This is primarily because these two variables are the direct
indicators of pool geometry which control the fusional bonding
among neighboring tracks and the lack of fusion defect
formation. The hierarchical importance computed by the
information gain ratio and Gini index (see the supplementary
document) is also the same as what is predicted by information

gain (Fig. 4a). This mechanistic variable can be used to
construct a visual tool, a decision tree, to qualitatively predict
the lack of fusion.

Decision tree
A decision tree is a machine learning algorithm that can
categorize the five calculated mechanistic variables from the
occurrence of lack of fusion. For a new set of processing
parameters, the computed values of the five variables are
categorized using the decision tree to forecast the lack of
fusion. A decision tree is constructed to predict the lack of
fusion defect (Fig. 4b). The procedure for constructing the
decision tree is provided in the Methods section. The
dimensionless pool depth and dimensionless hatch spacing
are selected as the root node and classify node, respectively
which are also the two most influential variables (Fig. 4a). When
the calculated dimensionless hatch spacing and pool depth are
available, a decision tree can forecast the lack of fusion with
93.3 percent accuracy as shown in the Methods section. Figure
4c and d show the distributions of the normalized values of
numerically calculated dimensionless hatch spacing and
dimensionless pool depth with the linear heat input (a ratio
between the laser power and the laser scanning speed) based
on 101 experimental cases for four alloys10,13,32–49. Horizontal
dashed lines in both figures approximately delineate the values
of width and depth for cases with and without any lack of
fusion.
Since a decision tree can qualitatively predict the formation of

the defect for new processing conditions, an easy-to-use map can
be constructed based on the decision tree results (Fig. 4e). The
map can qualitatively predict the presence of lack of fusion which
is also tested using independent experimental data of Ti-6A-4V
parts55 made using PBF-L (Fig. 4e). We find that fully dense printed
parts are obtained using the process parameter corresponding to
the data point with the highest value of dimensionless pool depth
and the lowest value of dimensionless hatch spacing in the region
where the lack of fusion is not detected. For the printed part using
the other two parameters corresponding to the two points in the
region of defect formation, a lack of fusion defect is observed in
both cases. Although a decision tree delivers a visual tool to
forecast the lack of fusion, no quantitative relationship between
the lack of fusion formation and the mechanistic variables can be
obtained. A straightforward way of correlating multiple indepen-
dent mechanistic variables with the formation of the lack of fusion
voids is a linear regression as discussed below.

Lack of fusion index
Quantitative relations between the mechanistic variables and the
lack of fusion defects can guide engineers to adjust the important
variables to control the defect. Since linear regression is a simple
but effective approach for this purpose, it is used to provide an
equation to separate the cases with and without lack of fusion.
One of the prerequisites of linear regression is the independence
of the mechanistic variables. The independence of the five
mechanical variables is evaluated using Pearson’s correlation
coefficient (see Methods section). We found that these five
variables are linearly independent of each other. The results of the
linear regression are used to formulate the following lack of fusion
index (LFI) containing the five calculated mechanical variables.

LFI ¼ 0:473H � 0:15D� 2:61 ´ 10�5Ma� 0:122T

þ 0:306Foþ 0:569
(3)

where H, D, Ma, T, and Fo are the calculated dimensionless hatch
spacing, dimensionless pool depth, Marangoni number, dimen-
sionless peak temperature, and Fourier number, respectively. The
correlation is applicable within the ranges of values of each
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mechanistic variable indicated in the supplementary document.
The sign of each coefficient in Eq. (3) represents how a particular
mechanistic variable affects the lack of fusion defect. For example,
H and Fo have positive coefficients which indicate an increase in
the lack of fusion susceptibility for the higher values of these
variables. In contrast, the negative coefficients of D, Ma, and T
indicate a reduced lack of fusion susceptibility. The LFI can serve
as a useful indicator for forecasting the formation of lack of fusion
voids in printed metallic parts from the calculated values of the
mechanistic variables. Figure 5 shows the calculated LFI values
that correspond to the 101 experimental data sets10,13,32–49. The
data show that a threshold value of 0.5 for LFI can delineate the
cases with and without the lack of fusion based on minimum
classification error. This threshold value of 0.5 is valid for the four
alloys studied here for the range of process conditions reported in
the Supplementary document. When the calculated mechanical
variables are available, LFI can serve as an index to predict the lack
of fusion. Two sets of experimental data with or without the lack
of fusion were tested using LFI and shown in Fig. 5. The validity of
the procedure is observed from the two microstructures. The
index LFI derived using linear regression can predict the lack of
fusion defect with 90.0 percent accuracy as shown in the Methods
section.

Relative susceptibility of alloys
The calculated values of LFI of various process conditions for
different materials can be utilized to construct a lack of fusion
susceptibility maps (Fig. 6a–d) that can be used to evaluate the
relative susceptibility of alloys. These maps can visually represent
the process windows for reducing the lack of fusion. The lack of
fusion susceptible zone (for LFI ≥ 0.5) is indicated by the red color,
and the safe zone (for LFI < 0.5) is represented by the green color.
These maps can be made available on the shop floor for indicating
ranges of processing conditions suitable for reducing the voids.
Furthermore, these maps can be used to compare the suscept-
ibilities of different alloys to the formation of lack of fusion voids.
Under the same PBF-L conditions, stainless steel 316 is the most
susceptible to the formation of the lack of fusion voids among the
four alloys. For the same scanning speed and laser power, the red
zone for SS 316 occupies the largest area on the maps among the
four alloys examined.
The aforementioned results show that wider and deeper pools

obtained at a higher laser power and a slower scanning speed can

reduce the formation of lack of fusion voids. However, the
conditions that can reduce the lack of fusion may cause other
defects. For example, large pools at a high laser power and slow
scanning speed shrink more during the solidification and may
result in distortion. Apart from the differences in the molten pool
size, the size of the mushy zones for different alloys also vary
widely (Fig. 3). The solidification range that affects the shape and
size of the mushy zone largely contributes to the susceptibility to
solidification cracking. The vulnerability to lack of fusion is not
largely affected by the mushy zone size but by the shape and size
of the entire fusion zone. Therefore, the selection of processing
conditions to reduce the lack of fusion voids should be carefully
done so that it does not result in other defects such as
solidification cracking, balling, and distortion.
In summary, we find that augmented machine learning with

human intelligence can achieve superior printed parts by reducing
the lack of fusion voids. Five mechanistic variables, dimensionless
pool depth (pool depth/layer thickness), dimensionless hatch
spacing (hatch spacing/pool width), dimensionless temperature
(peak temperature/liquidus temperature), Marangoni number, and
Fourier number are found to be influential in determining the
susceptibility to lack of fusion in PBF-L parts. Two machine
learning algorithms, decision tree and linear regression forecast
the lack of fusion with 93% and 90% accuracy, respectively. The
proposed lack of fusion index has a threshold value of 0.5 for
delineating the parts with and without lack of fusion. The index is
also used to generate easy-to-use lack of fusion susceptibility
maps that showed that for the processing conditions investigated
here, SS316 was the most susceptible alloy and AlSi10Mg alloy
was the least susceptible alloy to lack of fusion. The same
hierarchical importance of the mechanistic variables on the lack of
fusion is obtained by using three feature selection indexes,
information gain, information gain ratio, and Gini index. The
dimensionless depth of the pool and dimensionless hatch spacing
are the two most influential variables because these two variables
are the direct indicators of pool geometry that control the fusional
bonding among neighboring tracks and layers.
Considering that the knowledge base of manufacturing

processes such as welding and casting evolved largely by
empirical testing, this example shows how 3D printing can mature
using the emerging digital tools. If the application of this
procedure is verified for solving other problems of 3D printing,
it will mature following a path that is rapid, scientifically based,
and cost-effective. The traditional trial and error tests will be
replaced by the advantages achievable from the application of
mechanistic modeling and augmented machine learning. The
methodology can reduce cost, improve the quality of the printed
metallic parts, facilitate the printing of new alloys, and is equally
attractive to solve important problems of other manufacturing
processes.

METHODS
Data set for machine learning
The method used here is based on one hundred and one data for an
aluminum alloy10,32–37, AlSi10Mg, titanium alloy13,38–44, Ti6Al4V, stainless
steel45–47, SS316, and a nickel alloy48,49, Inconel 718. We indicated the
presence or the absence of lack of fusion defects as “1” and “0”,
respectively. Among all one hundred and one data points, 38 cases were
with the lack of fusion defects, and defects were not observed in the
remaining 63 cases. Five mechanistic variables corresponding to all one
hundred and one data points were calculated using a mechanistic model.
For the two groups of cases (“0” and “1”), the data were randomly
separated into three sub-sets. In machine learning analysis of decision tree
and linear regression, 60% of the data were used for training, 10% for
validation, and 30% for testing. The materials properties and process
parameters were used to calculate the five mechanistic variables from a
heat transfer and fluid flow model and the calculated results are given in
the supplementary document.
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Heat transfer and fluid flow model of powder bed fusion
The transient, 3D heat transfer and fluid flow model of the PBF-L process
considers process variables and alloy properties as input variables and
supplies transient 3D temperature and velocity distribution and the shape
and size of the molten pool as output. The details of this model are
available in our previous works25,26,56and are not repeated here. The
calculation domain contains the substrate, powder bed, hatches and
layers, and shielding gas. The calculations are performed by iteratively
solving the equations of mass, momentum, and energy conservations. The
thermophysical properties4,26 of Ti-6Al-4V, AlSi10Mg, SS 316, and Inconel
718 used for the calculations are presented in the supplementary
document.
The model can simulate molten pool shape and dimensions for multi-

layer multi-hatch deposits. For example, Fig. 7a–c show the computed
shapes and dimensions of the molten pools at transverse sections of five
hatch, three-layer, SS 316 builds at various processing conditions. Lack of
fusion can originate in the unmelted region between the neighboring
tracks (Fig. 7a). However, a higher laser power (Fig. 7b) or a lower scanning
speed (Fig. 7c) results in a bigger pool and ensures complete fusional
bonding with sufficient overlap of the neighboring tracks to decrease the
lack of fusion. The calculated shape and dimensions of the molten pool are
validated as discussed in the supplementary document.

Implementation of machine learning algorithms
Three commonly used feature selection algorithms57, Iterative Dichot-
omiser (ID 3), Classification and regression tree (CART), and a variant of ID3
commonly referred to as C4.5 were used to rank the importance of five
mechanistic variables on the lack of fusion. Their importance was
estimated by the ranking of the feature selection indexes using three
algorithms. The feature selection indexes, information gain, and informa-
tion gain ratio corresponding to ID 3 and C4.5 were computed from the
entropy. A variable with high values of information gain ratio and
information gain indicated its high importance. The calculations of the Gini

index using the CART algorithm were based on the prediction of
impurity54,57. A relatively more important variable had a low Gini index.
A decision tree3,58 was constructed using the information gain values of

the computed mechanistic variables. The mechanistic variable with the
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highest information gain was selected as the root node of the tree. The
tree contained multiple nodes and each node represented a mechanistic
variable. A node classified the data by comparing the value of the data and
a classifier value. The classifier value for a node was selected so that the
node can classify the data with maximum accuracy54,57,58. The calculation
continues until all data can be classified into two classes.
A linear regression equation is used to connect the five mechanistic

variables and lack of fusion. The coefficients of variables are optimized
using a genetic algorithm59 to achieve a least square error in the linear
fitting between the lack of fusion results and the five mechanistic
variables used in this work.

Evaluation of the mutual independence of mechanistic
variables
The mutual independence of five mechanistic variables was examined
using Pearson’s correlation coefficient. The Pearson’s coefficient (ρ) is
estimated using the following equation:

ρ x1; x2ð Þ ¼ COV x1; x2ð Þ
σx1σx2

(4)

where x1 and x2 are any two mechanistic variables, σ indicates the
standard deviation of variables, and COV indicates a function to
estimate covariance between two variables. Equation (4) can provide
the mutual independence of each two mechanistic variables. The value
of the Pearson’s coefficient (ρ) varies between −1 and 1. −1 and 1
indicate a strong negative and positive correlation, respectively. The
five mechanical variables are dimensionless hatch spacing (H),
dimensionless pool depth (D), Marangoni number (Ma), dimensionless
peak temperature (T), and Fourier number (Fo). The calculated Pearson’s
coefficients can be used to construct a Pearson matrix, which is
provided in Fig. 8. The absolute values of ρ less than 0.5 indicate no
interdependence of the mechanistic variables.

Confusion matrices and calculations of accuracy
Confusion matrices were constructed to provide a visual description of the
prediction ability of different machine learning algorithms used here to
predict the lack of fusion57. The method of constructing confusion matrices
and their interpretations are described in the supplementary document.
Figure 9a and b illustrate the confusion matrices for the decision tree and
linear regression-based prediction of defects, respectively. The calculation
methods of the accuracy of the above two machine learning methods from
the data in confusion matrices are also discussed in detail in the
supplementary document. The computed accuracies for testing in
predicting the lack of fusion defects using a decision tree and linear
regression are 93.3% and 90.0%, respectively.
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