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a b s t r a c t 

Process parameters and thermophysical and mechanical properties of alloys affect cracking which remains 

a major challenge in metal printing. Cracks occur because of multiple mechanisms and currently, there is 

no unified mitigation strategy. Here we evaluate the effects of variables related to the physics of cracking 

computed by a mechanistic model and independent experimental data using machine learning to prevent 

cracking. The computed solidification stress, the ratio of the vulnerable and relaxation times, ratio of the 

temperature gradient to solidification growth rate, and cooling rates and experimental data are used to 

generate a cracking susceptibility index that predicts crack formation before printing. Computed values 

of these four variables when used in a decision tree, support vector machines, and logistic regression 

can predict crack formation with exceptional accuracy. Information gain, information gain ratio, and Gini 

index-based feature selection calculations provide the same comparative influence of these four variables. 

Results are presented as easy-to-use cracking susceptibility maps. Our approach can help in process op- 

timization, designing new alloys, and solving problems in manufacturing beyond metal printing. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Additive manufacturing (AM) can print unique metallic parts 

hat cannot be fabricated by conventional manufacturing processes 

1–3] . The powder bed fusion – Laser (PBF-L) process is a poten- 

ially attractive technique to make aluminum alloy parts in various 

ndustries due to their high strength-to-weight ratios [1–3] . Thin 

ayers of alloy powders are melted by a laser beam and solidified 

ayer upon layer to make complex parts with closely spaced fea- 

ures [ 2 , 4 , 5 ]. The repeated melting and solidification often gener-

te cracks in parts [6] , which significantly degrade their mechani- 

al properties and serviceability [ 3 , 6 ]. 

The addition of inoculants [1] to form equiaxed grains and the 

pplication of external ultrasonic energy [7] to break up the long 

olumnar grains have been tried to mitigate cracking. However, 

he type and amounts of inoculants and the intensity of the ultra- 

ound energy are determined by trials. Cracking is also prevented 

y adjusting both the alloy composition and process variables such 

s heat source power, scanning speed, and preheat temperature 

8–12] . The maximum slope of temperature versus square root of 

olid fraction has also been suggested as a cracking susceptibility 

riterion [ 13 , 14 ]. However, this criterion considers alloy composi- 

ion and ignores process variables. Moreover, the effects of process 

ariables often provide conflicting trends in cracking. For example, 
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apid scanning may enhance cracking by reducing the time for the 

iquid to reach the crack site [15] . However, slow scanning may re- 

ult in larger pools that shrink more during solidification result- 

ng in cracking [15] . Currently, there is no thorough understand- 

ng of the effects of process variables and properties of alloys on 

rack formation because they cannot be related to the mechanism 

f cracking. 

The stress accumulated during solidification plays an important 

ole in cracking [16] . The temperature gradients and solidification 

ates affect the solidification morphology and the scale of the mi- 

rostructure both of which affect crack formation [3] . In the ini- 

ial period of solidification, the low solid fraction allows the liq- 

id to relax the partially solidified region. In contrast, in the fi- 

al stage of solidification, the part becomes vulnerable to cracking 

ecause the high solid fraction obstructs the transport of the liq- 

id to the crack site. The duration of both the vulnerable and the 

elaxation times are important for cracking [6] . The stress during 

olidification, the ratio of vulnerable and relaxation times, solidifi- 

ation morphology, and cooling rate are the mechanistic variables 

hat are known to affect crack formation [ 3 , 6 , 16 ]. All these mecha-

istic variables are affected by both alloy composition and process 

arameters. In addition, the mechanisms of action of each of these 

echanistic variables have been studied separately. However, what 

s needed but unavailable is an in-depth understanding of the col- 

ective roles of these mechanistic variables on crack formation. The 

alues of each of these mechanistic variables can be calculated for 

ach experimental condition and alloy composition using a mech- 

nistic model. 

https://doi.org/10.1016/j.actamat.2021.117612
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2021.117612&domain=pdf
mailto:debroy@psu.edu
https://doi.org/10.1016/j.actamat.2021.117612
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Fig. 1. A Physics-informed machine learning towards crack-free printing. Computed values of cooling rate and solidification morphology (indicated by the ratio of tem- 

perature gradient and solidification growth rate) at the trailing edge of the melt pool, the ratio of vulnerable and relaxation times, and solidification stress are used in a 

physics informed machine learning to accurately predict cracking during PBF-L of aluminum alloys. The combination of machine learning and mechanistic modeling gives a 

cracking susceptibility index, process maps for crack-free printing, the comparative influence of the important variables, and a decision tree to predict crack formation. 
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Here we show that cracks in printed metallic parts can be mit- 

gated by physics-informed machine learning [ 17 , 18 ]. The physics 

f crack formation captured by the mechanistic variables is aug- 

ented into machine learning (ML) [ 19 , 20 ] to correlate with crack-

ng occurrence for three aluminum alloys, 6061 Al, 2024 Al, and 

lSi10Mg. Our approach involves mechanistic modeling [21] , ma- 

hine learning, and experimental data [ 9 , 10 , 22-26 ] and is schemat-

cally represented in Fig. 1 . We develop and use a cracking suscep- 

ibility index to avoid cracking during PBF-L. Also, we determine 

he hierarchical order of mechanistic variables on crack formation. 
2 
. Methodology 

.1. Physics-informed machine learning 

Process variables along with thermophysical and mechanical 

roperties of alloys affect crack formation. The twelve most im- 

ortant variables [ 1 , 6 , 12 , 27-29 ] include laser power, laser beam ra-

ius, scanning speed, layer thickness, preheat temperature, hatch 

pacing, specific heat, thermal conductivity, density, solidification 

ange, maximum slope (|dT/d(f s ) 
1/2 |), and the Youngs modulus. To 
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uantitatively resolve the effects of these variables on cracking, at 

east 2 12 (4096) experiments using the 2-factor design of exper- 

ments are needed [30] . The available experimental data do not 

atisfy this requirement for forecasting cracking based on the raw 

rocess variables and alloy properties. Currently, there is no avail- 

ble literature that evaluated the hierarchy of the above 12 vari- 

bles and thermophysical properties. 

As a solution, we use several mechanistic variables that repre- 

ent the physics of crack formation. A similar analogy can be found 

n fluid mechanics where the dimensionless Reynolds number is 

sed to represent the type of fluid flow (laminar or turbulent) 

hrough a cylindrical pipe instead of the variables viscosity, den- 

ity, velocity, and pipe diameter. In the context of metal printing, 

everal mechanistic variables that are based on physics and em- 

ody the role of multiple alloy properties and process variables can 

ake the calculations tractable. The existing literature on crack- 

ng in fusion welding and AM points towards many such mecha- 

istic variables, such as temperature gradient [ 3 , 6 , 8 ], solidification

rowth rate [ 3 , 6 , 8 ], cooling rate [ 3 , 6 , 8 ], solidification morphology

 6 , 8 ], molten pool aspect ratio [ 3 , 6 , 27 ], mushy zone size [ 3 , 6 ], so-

idification stress [ 6 , 16 , 28 ], and the ratio of the vulnerable and re-

axation times [6] . However, many of these variables are interde- 

endent. Therefore, we have performed a statistical analysis using 

earson’s correlation (see Appendix A1) to select variables that are 

ndependent and still represent the physics of cracking. These vari- 

bles are the cooling rate during solidification [ 3 , 6 , 8 ], the ratio of

he temperature gradient to the solidification growth rate [ 6 , 8 ], so-

idification stress [ 6 , 16 , 28 ], and the ratio of the vulnerable and re-

axation times [6] . These four mechanistic variables need at least 

 

4 = 16 experimental data to accurately predict their role in crack 

ormation. Here we show that a physics informed machine learning 

sing the combined calculated mechanistic variables predict crack 

ormation ( Fig. 1 ) and highlight several unknown aspects of the 

roblem. 

Physics informed machine learning provides physics based cor- 

elation of crack formation with the mechanistic variables. For ex- 

mple, the computed values of solidification growth rate and tem- 

erature gradient, along with other variables can be correlated 

ith the formation of crack using machine learning. Lower val- 

es of the temperature gradient to solidification growth rate ra- 

io promote equiaxed grains and resist cracking. Both temperature 

radient and solidification growth rate along with other mechanis- 

ic variables can be readily estimated using mechanistic models of 

BF-L that solve the Navier Stokes and energy conservation equa- 

ions using alloy properties and process parameters as inputs [21] . 

Physics informed machine learning using the four mechanistic 

ariables helps lower cost, reduces experimental trials, and sheds 

ight on the crack formation mechanism using the current knowl- 

dge base of metallurgy. 

.2. The calculation of mechanistic variables based on heat transfer 

nd fluid flow model 

The four variables which affect crack formation are cooling rate 

 31 , 32 ] during solidification ( τ ), the ratio of the temperature gra-

ient to the solidification growth rate [ 3 , 8 ] ( ε), solidification stress

 6 , 16 ] ( σ ), and the ratio [6] of vulnerable and relaxation times ( β).

heir mechanisms of action along with the process of calculation 

 Fig. 2 ) are discussed below. 

.2.1. The cooling rate during solidification ( τ ) 

The cooling rates, indicated by the curved lines [3] in Fig. 2 a, 

ffect the grain size and cracking [31] . The ductility-based mod- 

ls relate critical strain rate to cracking. The rate of strain gener- 

ted with the decrease in temperature is inversely related to the 

ooling rate and the ranking of various alloys by this metric agrees 
3 
ith welding [31] . Rapid cooling also refines the grains [32] which 

inders crack propagation and reduces cracking [12] . The cooling 

ates during solidification are calculated between the liquidus and 

olidus isotherms at the trailing edge of the molten pool ( Fig. 2 c)

n the top surface where cracks commonly form [33–35] . The cool- 

ng rates are calculated using a well-tested heat transfer and fluid 

ow model which is discussed in the Appendix A2. The properties 

f the three aluminum alloys utilized in the modeling are provided 

n Table 1 . 

.2.2. The ratio of temperature gradient to solidification growth rate 

 ε) 

The slope of the straight lines in Fig. 2 a, represents the value of 

which affects morphologies [3] of the solidified alloys. Low ratios 

esult in equiaxed grains often near the centerlines of the deposits 

3] , ( Fig. 2 a). Equiaxed grains reduce the susceptibility to crack for- 

ation [8] . Columnar grains form at high values of the ratio and 

ake the microstructure susceptible to cracking ( Fig. 2 a). The cal- 

ulation of ε is also performed at the same location as the cooling 

ate using the heat transfer and fluid flow model (see Appendix 

2). 

.2.3. The ratio of the vulnerable and relaxation times ( β) 

Crack forms during the last stage of solidification [6] between 

olid fractions of 0.90 and 0.99. The part is vulnerable to cracking 

uring this time, which needs to be viewed in comparison with 

he time during which liquid feeding of the solidification shrinkage 

an occur readily ( Fig. 2 d). It is now accepted [ 6 , 36 , 37 ] that suffi-

ient liquid feeding is available between solid fractions of 0.4 to 

.9 which helps in strain relaxation. Furthermore, beyond a solid 

raction of 0.99, the part is sufficiently strong to resist cracking 

 6 , 36 , 37 ]. The temperatures corresponding to these solid fractions 

an be estimated from the Scheil curves (see Appendix A3) for 

ach alloy simulated using a commercial software (ThermoCalc). 

ince we have the transient temperature field from heat and fluid 

ow calculations (see Appendix A2), the times corresponding to 

olid fractions of 0.4, 0.9, and 0.99 can be readily obtained. There- 

ore, the vulnerable and relaxation times ratio was calculated from 

he computed temperature field and Scheil curve. The top surface 

emperature field was used for these calculations since the cracks 

riginate at or near the melt pool trailing edge. The ratio of the 

ulnerable and relaxation times was calculated by considering the 

ocations of the isotherms along the scanning direction. Solid frac- 

ions of 1 and 0 correspond to solidus and liquidus temperatures of 

n alloy, respectively. Similarly, the temperatures corresponding to 

olid fractions of 0.40, 0.90, and 0.99 were estimated [ 13 , 14 ] from

he Scheil curve for each alloy (see Appendix A3). The time of so- 

idification between 0.90 and 0.99 solid fractions was obtained by 

ividing the appropriate length corresponding to these solid frac- 

ions by the scanning speed. A similar procedure was followed for 

alculating the time for solidification between 0.40 and 0.90 solid 

ractions. 

.2.4. Solidification stress ( σ ) 

A crack may initiate from the last remaining liquid in the 

nter-dendritic region under high solidification stress ( Fig. 2 b) 

 12 , 16 , 38 , 39 ]. The amount of the last remaining liquid may be ob-

ained from the Scheil plots of T vs (f s ) 
1/2 for different aluminum 

lloys (see Appendix A3). The maximum slope of these plots oc- 

urs at different solid fractions between 0.90 and 0.99. A gentle 

lope near the end of solidification indicates low cracking suscepti- 

ility. The volume of the liquid remaining at the solid fraction cor- 

esponding to the maximum slope affects the solidification stress. 

he calculation of the stress [38] that causes cracking is discussed 

s follows. 
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Fig. 2. The role of mechanistic variables on crack formation. (a) The cooling rate [ 33 , 34 ] affects the scale of the microstructure. The ratio of the temperature gradient to 

the solidification growth rate determines the morphology of the solidification microstructure [ 33 , 34 ] (adapted from 34). The formation of columnar and equiaxed dendrites 

at different locations of the deposit depends on the local solidification parameters (adapted from 4 ). (b) High solidification stress [ 6 , 12 , 16 , 36 ] can initiate cracking in the 

inter-dendritic region during the last stage of solidification. (c) In the PBF-L process, a laser beam melts alloy powder particles to form a molten pool (red region) and the 

mushy zone shown by the yellow region. (d) Insufficient liquid feeding [ 6 , 12 , 28 , 29 , 35 ] in the inter-dendrite region in the last step of solidification fails to compensate for 

solidification shrinkage and causes cracking. The three points on the solid fraction versus temperature plot correspond to the specific solid fractions in the mushy zone 

needed for the calculation of vulnerable and relaxation times. 
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The solidification stress ( σc ) was obtained following an estab- 

ished methodology [ 16 ] that considers tensile stress as positive. 

c = 

√ 

2 E γS 

πa 
(1) 

here E is the modulus of elasticity and γS is the specific surface 

nergy. The values of E are provided in Table 1 and γS was taken 

16] as 0.035 J/m 

2 . The variable ‘ a ’ is half of the length of an inter-

al crack. The length of the crack was estimated from the amount 
4 
f the liquid available in the mushy zone during the last stages of 

olidification, i.e., for a solid fraction varying between 0.90 to 0.99 

here the slope of the Scheil curve (T versus (|dT/d(f s ) 
1/2 |)) is max-

mum for the three aluminum alloys. Solid fractions of 0.93, 0.97, 

nd 0.99 were used for 2024 Al, AlSi10Mg, and 6061 Al alloy, re- 

pectively (see Appendix A3). The volume of the remaining liquid 

as calculated by multiplying 0.07, 0.03, and 0.01 by the corre- 

ponding mushy zone volume for 2024 Al, AlSi10Mg, and 6061 Al 

lloys, respectively. The length scale of the crack was taken as the 
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Table 1 

The temperature-dependent properties of three aluminum alloys utilized in the calculations. Here, ‘T’ represents temperature in K. The density is taken at room temper- 

ature, the latent heat of fusion at the liquidus temperature, and viscosity at liquidus temperature [ 3 , 4 ]. The temperature dependence of density and viscosity have been 

ignored in the calculations because the errors due to these simplifications are small. 

Properties AA2024 AA6061 AlSi10Mg 

Liquidus temperature (K) 907 925 867 

Solidus Temperature (K) 768 781 831 

Thermal conductivity (W/mK) 25.2 + 3.98 × 10 −1 T + 7.36 × 10 −6 T 2 –2.52 × 10 −7 T 3 25.2 + 3.98 × 10 −1 T + 7.36 × 10 −6 T 2 –2.52 × 10 −7 T 3 113 + 1.06 × 10 −5 T 

Specific heat (J/Kg K) 930–6.27 × 10 −1 T + 1.48 × 10 −3 T 2 –4.33 × 10 −8 T 3 929–6.27 × 10 −1 T + 1.48 × 10 −3 T 2 –4.33 × 10 −8 T 3 536.2 + 0.035T 

Density (Kg/m 

3 ) 2780 2700 2670 

Latent heat of fusion (J/Kg) 297 × 10 3 335 × 10 3 425 × 10 3 

Viscosity (Kg/m s) 1.3 × 10 −3 1.5 × 10 −3 1.3 × 10 −3 

dγ
dt 

(N/m K) −0.35 × 10 −3 −0.40 × 10 −3 −0.35 × 10 −3 

Absorption coefficient in liquid 0.3 0.3 0.3 

Absorption coefficient in powder 0.7 0.7 0.7 

Modulus of elasticity (GPa) 73 68.9 65 

Table 2 

Range of process variables and four mechanistic variables. 

Process variables Range 

Laser power (W) 192 - 900 

Scanning speed (mm/s) 75 - 2100 

Hatch spacing (mm) 0.07 - 0.3 

Layer thickness (mm) 0.03 - 0.1 

Laser beam radius (mm) 0.04 - 0.1 

Preheat temperature (K) 298 - 773 

Mechanistic variables Range 

Solidification Stress (MPa) 4.56 – 10.04 

Ratio of vulnerable and relaxation times 0.13 – 4.67 

Solidification parameter (Ks/mm 

2 ) 0.76 - 31.14 

Cooling rate (K/s) 43,815 - 6396,480 
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ube root of the volume of the remaining liquid. The crack length 

as found to vary between 30 μm and 148 μm, which is consis- 

ent with the reported [ 6 , 16 ] values of cracks in aluminum alloys. 

.3. Data used in the analysis 

Our machine learning (ML) analysis is based on 102 literature 

ata sets wherein 62 cases had cracks and 40 cases were without 

xperimentally detected cracks [ 9 , 10 , 22-25 ]. Each data set consists

f process variables that are paired with the presence or absence 

f cracks. The four mechanistic variables were computed for each 

f these 102 cases using the process variables and alloy thermo- 

hysical properties in a heat transfer and fluid flow model. Table 2 

ists the range of the process variables and four mechanistic vari- 

bles for all the experimental data sets. The process variables and 

echanistic variables for all experimental cases are given in the 

upplementary document. 

.4. Machine learning (ML) algorithms 

Crack formation in PBF-L parts is a classification problem for 

pecimens with and without cracks. Therefore, to predict crack for- 

ation we used decision tree, logistic regression, and support vec- 

or machines [20] all of which are well-known classification algo- 

ithms. These algorithms and their implementation are discussed 

n the supplementary information section. The calculations of lo- 

istic regression and support vector machine were performed in 

EKA [40] using 102 data with 10-fold cross-validations. 

The ranking of four mechanistic variables on cracking is based 

n three indices, Gini index (GI), information gain (IG), and infor- 

ation gain ratio (IGR). These three indices are calculated using 

hree commonly used ML algorithms ID 3, C4.5, and CART (classi- 

cation and regression tree), respectively [ 20 , 40 ]. Threshold values 

f each variable are used by these algorithms to separate the two 

lasses i.e., crack and no cracks. The ranking was calculated from 
5 
omputed values of four mechanistic variables of the 102 data sets 

nd the experimentally observed crack occurrence. A variable with 

he maximum value of IG and IGR is the most important. In con- 

rast, a variable with the maximum influence on cracking should 

ave the least GI. The calculation of ranking using the mechanistic 

ariables is demonstrated in the supplementary information. 

To provide a qualitative tool to predict cracking a decision tree 

ased on the ID3 algorithm [40] was generated. The tree is con- 

tructed using the IG value of the four mechanistic variables corre- 

ponding to 102 data. Using the highest IG, the variable stress was 

elected as the root node. Based on the threshold the data was 

plit and in succeeding steps, similar IG calculations were done on 

ther variables till a leaf node was achieved. Computed values of 

he four mechanistic variables for a new experiment are evaluated 

sing the tree to predict whether the crack will form. 

. Results and discussion 

The combined effects of alloy thermophysical properties and 

rocess variables affect [41–43] the four mechanistic variables rep- 

esenting the physics of crack formation. For example, the cool- 

ng rate during solidification has been reported to change with 

he scanning speed and laser power [ 3 , 4 ]. Similarly, the temper- 

ture gradient to solidification growth rate ratio is affected by the 

canning speed [ 3 , 4 ]. Solidification stress has been reported to de- 

end on speed [41] and power [42] . The three alloys have widely 

arying molten pool geometry and temperature fields which con- 

rol the four mechanistic variables and hence susceptibility to crack 

ormation ( Fig. 3 ). Individually none of the four computed mecha- 

istic variables can predict cracking susceptibility. However, these 

our variables can accurately predict crack formation when they 

re used in combination in machine learning. 

.1. Prediction of the crack formation using physics informed machine 

earning 

Computed values of the four mechanistic variables are used 

n different ML algorithms to predict the occurrence of cracks in 

rinted aluminum alloy parts. The prediction of crack formation is 

 classification problem with two classes of output, crack and no 

rack. The decision tree is a classification-based ML tool that can 

lassify the input data based on the occurrence of crack formation. 

he decision tree ( Fig. 4 a) can predict the occurrence of cracks 

rom the four calculated mechanistic variables. The construction 

f the decision tree is explained in Section 2.4 . For any new sets 

f processing conditions, calculated values of the four mechanistic 

ariables are classified using the tree to predict crack formation. 

he decision-making starts with the solidification stress and con- 

inues by checking the values of other mechanistic variables un- 

il a decision is made on the crack formation. The decision tree 
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Fig. 3. Calculated t emperature and velocity distributions in 3D. The alloy prop- 

erties and process variables significantly affect the three-dimensional temperature 

and velocity distributions that are used to compute the four mechanistic variables. 

The velocity fields, dominated by Marangoni convection [3] , affect the tempera- 

ture fields and melt pool geometry. The process variables such as the laser power 

(500 W), scanning speed (2000 mm/s), layer thickness (30 μm), and beam radius 

(50 μm) were kept constant for the printing of (a) 2024 Al, (b) 6061 Al and (c) 

AlSi10Mg. Temperature contours are shown in the legend of each figure. Vectors 

representing the velocity of fluid flow are indicated by black arrows. Their magni- 

tudes can be calculated by comparing their lengths with the reference vector. X, Y, 

and Z axes represent the scanning direction (positive X direction), the width, and 

the depth, respectively. 
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s proved to be accurate in predicting crack formation as evident 

rom the corresponding confusion matrix ( Fig. 4 d). The construc- 

ion of a confusion matrix and the method of computing accuracy 

rom that are explained in the supplementary document. 

Although the decision tree provides a visual tool to predict 

racks, no quantitative correlation between the four mechanistic 

ariables and crack formation can be obtained. Such quantitative 

elations can guide us to tune in the important variables to control 

racking. Support vector machines can provide an algebraic equa- 

ion of a hyperplane that separates the specimens with or with- 

ut cracks (see the supplementary document). The equation of the 

yperplane contains the four mechanistic variables. For a new set 
6 
f experiments, the calculated values of the four mechanistic vari- 

bles can be used in the equation to predict the formation of crack. 

lthough support vector machines can predict crack formation ac- 

urately (see confusion matrix in Fig. 4 e) the wide variety of data 

n crack formation corresponding to different values of four mech- 

nistic variables makes the equation of the hyperplane cumber- 

ome, as explained in the supplementary document. In addition, 

he presence of four input variables precludes a visual representa- 

ion of the hyperplane. 

The predictive performance of a regression-based model can 

e very good especially for a small dataset examined here. For a 

ataset with binary classes of output, logistic regression is often a 

ood choice. It provides an algebraic equation to correlate the four 

echanistic variables with the probability of occurrence of crack- 

ng (see supplementary document for details). The ‘S’-shaped sig- 

oid function fitting ( Fig. 4 b) of experimental data using a logistic 

egression can predict the crack formation ( Fig. 4 f). However, the 

0% accuracy of prediction is the lowest of the four classification 

lgorithms and the use of non-linear, probability-dependent equa- 

ion is not straightforward as explained in the supplementary doc- 

ment. 

As an alternative to the low accuracy of the logistic regression 

or the dataset used, we explored linear regression ( Fig. 4 b). A pre-

equisite for fitting a linear equation with four input variables is 

hat there must not be any interdependence among these vari- 

bles. The Pearson matrix ( Fig. 4 c) provides the correlation coef- 

cients among the four variables. The absolute values of the cor- 

elation coefficients less than 0.5 indicate no interdependence of 

he variables [ 44 , 45 ]. Therefore, the four mechanistic variables are 

inearly fitted to provide an algebraic equation that can predict 

rack formation with high accuracy (see the confusion matrix in 

ig. 4 g). Although the other algorithms are beneficial in the accu- 

ate prediction of cracking, the linear regression can provide a sim- 

le cracking susceptibility index which can provide many insights 

bout crack formation as discussed below. 

.2. Cracking susceptibility index 

A cracking susceptibility index (CSI) is an indicator that can pre- 

ict the occurrence of cracks in printed parts using the four mech- 

nistic variables that depend on process variables and alloy proper- 

ies. The CSI is derived by relating the cracking frequency with the 

our mechanistic variables of 102 data sets (see the supplementary 

ocument) of literature data [ 9-10 , 22-25 ] for three aluminum al- 

oys using linear regression. The crack occurrence is either 1 or 0 

epending on whether cracks were observed or not. 

The results obtained from the linear regression are used to de- 

ive an easy-to-use, verifiable cracking susceptibility index (CSI) 

s: 

SI = 0 . 182 σ + 0 . 135 β + 0 . 014 ε − 1 . 1 × 10 

−8 τ − 0 . 85 (2) 

here the variables σ , β , ε, and τ indicate the computed values of 

olidification stress (in MPa), the ratio of vulnerable and relaxation 

imes, the temperature gradient to the solidification growth rate 

atio (in K-s/mm 

2 ), and cooling rate (in K/s), respectively. Eq. (2) is 

pplicable for the ranges of four mechanistic variables provided in 

able 2 . A high value of CSI correlates with higher cracking sus- 

eptibility. The calculated CSI values for the 102 data sets show 

hat the CSI has a threshold value of 0.5 ( Fig. 5 ). This threshold

alue could accurately predict all but 16 of the 102 experiments 

onsidered. The CSI for the alloy system examined has an accuracy 

f 84.3% as explained from the confusion matrix. This threshold 

alue of 0.5 is valid for the three aluminum alloys studied here 

or the range of process conditions reported in Table 2 . Threshold 

alues higher than 0.65 and lower than 0.45 all correctly conform 

o the predictions of CSI. While all values greater than 0.65 corre- 
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Fig. 4. Applications of different ML algorithms to predict crack formation. (a) A decision tree constructed using four mechanistic variables, σ , ε, β , and τ to predict 

crack formation in aluminum alloy printed parts. The decision-making criteria are based on the normalized values of the four variables. The methods of normalization and 

the construction of the tree are explained in the supplementary document. (b) An overlay of results of logistic regression and linear regression along with the experimental 

observation of crack formation. Here, 1 and 0 indicate specimens with or without cracks, respectively. The p-value for the linear regression was of the order of 10 −5 (c) A 

Pearson matrix indicating the correlation coefficients among the 4 mechanistic variables. Absolute values of correlation coefficients less than 0.5 indicate less interdependence 

of the variables which is a prerequisite of fitting the variables using linear regression. Confusion matrices to evaluate the crack prediction ability of (d) decision tree, (e) 

support vector machines, (f) logistic regression, and (g) linear regression based on occurences of cracks. The construction of these confusion matrices and the method for 

predicting the accuracy of crack prediction from these matrices are described in the supplementary document. The computed accuracies of the decision tree, support vector 

machines, logistic regression, and linear regression are 85.3%, 90.2%, 70%, and 84.3%, respectively. 
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pond to the presence of cracks and values smaller than 0.45 cor- 

espond to crack-free cases, the intermediate values indicate spec- 

mens with or without cracks. The origin of this deviation from 

.5 is unknown. In addition, the sign before the coefficients in 

q. (2) indicates the type of relationship between the mechanis- 
7 
ic variable and cracking. For example, σ , β , ε with positive co- 

fficients have a direct influence on cracking susceptibility which 

ncreases for higher values of these variables. Similarly, the neg- 

tive coefficient of cooling rate, τ , indicates diminished cracking 

usceptibility at higher cooling rates. 
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Fig. 5. The effectiveness of the cracking susceptibility index (CSI). The cracking susceptibility index obtained from the calculated values of four mechanistic variables can 

predict cracking. A threshold value of the index of 0.50 delineates the presence or absence of cracks. The required values of the four mechanistic variables needed for the 

estimation of the cracking susceptibility index can be obtained from a mechanistic model. The CSI is valid within the range of variables provided in Table 2 . The values of 

the index for the 102-independent experimental data [ 9-10 , 22-25 ] are shown in the figure using different symbols. The two micrographs for PBF-L of 6061 Al alloy [9] are 

consistent with the cracking susceptibility index. 

Fig. 6. The comparative influence of four mechanistic variables on cracking. The comparative influence is predicted using (a) the CSI from Eq. (2) (b) the information 

gain (IG) (c) the information gain ratio (IGR) and (d) the Gini index (GI). The variables σ , β , ε, and τ indicate the computed values of solidification stress (in MPa), the ratio 

of vulnerable and relaxation times, the temperature gradient to the solidification growth rate ratio (in K-s/mm 

2 ), and cooling rate (in K/s) respectively. 

8 
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Fig. 7. The contribution of the four mechanistic variables on cracking suscep- 

tibility index (CSI). The individual contributions of the four mechanistic variables 

on CSI along with the CSI values are shown for five experiments from the literature 

with both the (a) presence and (b) absence of cracks. The CSI increases with the in- 

creasing ratio of the temperature gradient to growth rate, solidification stress, and 

the ratio of vulnerable and relaxation times because of their positive coefficients in 

Eq. (2) . The cooling rate shows a beneficial contribution due to their negative co- 

efficients in Eq. (2) . Cracks were observed at CSI higher than 0.5 while values less 

than 0.5 had no cracks. 
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The calculated values of CSI can be used to predict cracking sus- 

eptibility before printing. The values of CSI higher than 0.5 in- 

icate the formation of cracks. An example, considering two sets 

f experimental data with and without cracks in PBF-L of 6061 

l is shown in Fig 5 [9] . The calculated values of CSI for those

wo experimental cases are shown in Fig. 5 which agrees with 

heir respective experimental finding. Since the calculation of CSI 

s based on data collected from different sources, the difference 

ue to machine-to-machine variations in part quality is implicitly 

ccounted for in this approach. 

.3. Comparative influence of variables and cracking susceptibility 

aps 

The comparative influence of the four mechanistic variables on 

rack formation is evaluated using their respective coefficients in 

q. (2) . The midrange values of the four mechanistic variables are 

ultiplied with their respective coefficients ( Table 2 ) to evaluate 

heir impacts. Solidification stress is found to be the most impor- 

ant factor affecting cracking followed by the ratio of the vulnera- 

le and the relaxation times and the temperature gradient to the 

olidification growth rate ratio ( Fig. 6 a). The cooling rate has the 

east influence on cracking ( Fig. 6 a). The three classification indices 

f ML, IG ( Fig. 6 b), IGR ( Fig. 6 c), and GI ( Fig. 6 d) also show the

ame comparative influence as above. The calculations of the three 

ndices are described in the supplementary document. Solidifica- 

ion stress has the highest values of both IG and IGR indicating its 

ole as the most influential variable affecting cracking. It also has 

he lowest value of GI which further ascertains its most important 

ontribution towards the crack formation. The comparative influ- 

nce of variables on cracking will help to select appropriate values 

f variables to avoid crack formation. 

Five cases each for crack ( Fig 7 a) and crack-free ( Fig 7 b) condi-

ions were randomly selected from the 102 data and paired with 

heir four computed mechanistic variables and the crack suscep- 

ibility index. The bar graphs in Fig. 7 (a) represent the contribu- 

ion of the individual mechanistic variables to the values of CSI. 

n all five cases, the prominent influence of solidification stress is 

pparent from its large contribution. The contribution of solidifi- 

ation stress was so large that the control of solidification mor- 

hology in many cases will not guarantee crack-free deposition. In 

ll cases, the ratio of vulnerable times to relaxation times was the 

econd most contributing factor in the crack formation. In con- 

rast, the contribution of the cooling rate is negligible in all five 

ases. The solid line in this plot represents the values of CSI for 

he five cases computed using Eq. (2) . In all five cases, the CSI val-

es higher than 0.5 indicate the high susceptibility to crack for- 

ation. Fig. 7 b shows the results of five specimens that showed 

he absence of cracks. Again the main contributor for the high sus- 

eptibility was the solidification stress. The cooling rate shows a 

eneficial contribution by reducing cracks due to its negative coef- 

cient in Eq. (2) . However, when the contributions of each mecha- 

istic variable were added together, the computed CSI values were 

ach lower than 0.5 indicating a high propensity of avoiding cracks 

s shown by the solid line. The figures show that although the 

ontributions by the individual mechanistic variables vary in dif- 

erent cases, it is the combined effect that determines the suscep- 

ibility of crack formation and consideration of an individual factor, 

o matter how important, cannot provide a complete view of the 

usceptibility to crack formation. 

The calculated CSI for various processing conditions is used to 

enerate cracking susceptibility maps which show process win- 

ows to avoid cracks ( Fig. 8 a and 8 b). The CSI in these maps shows

 trend that is observed in the existing methodology to control 

racking. For example, prevention of cracking (low CSI) by increas- 

ng the preheat temperature is a well-recognized technique used 
9 
n both fusion welding as well as in additive manufacturing. In 

ddition, we consider several experimental data with and without 

racks for PBF-L of 6061 Al from the literature [ 24 , 26 ] to evaluate

he applicability of the maps. The CSI values for these experiments 

ndicated in both Fig. 8 a and 8 b agrees with their respective exper- 

mental evidence. 

The preheat temperature, speed, and power affect the different 

echanistic variables differently. These mechanistic variables can 

hange widely depending on the process variables. The CSI maps 

 Fig 8 a and 8 b) can provide a practical approach to address the

racking issue. High powers and high preheat temperatures are 

sed to control cracking [ 9 , 46 ]. Changes in layer thickness and

atch spacing do not significantly affect the CSI because they do 

ot change the mechanistic variables considerably. For example, 

he cooling rate changes by 2.6% for a change in layer thickness 

rom 25 μm to 35 μm when other parameters are kept constant 

47] . Similarly, the cooling rate changes only 2.8% for a change in 

atch spacing from 35 μm to 110 μm [47] . Therefore, in the range

f layer thickness and hatch spacing that are typically used in PBF- 

, significant changes in the four mechanistic variables and CSI will 

ot occur. The ML approach in this work applies to the aluminum 

lloys and the range of process conditions indicated. A similar ML 
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Fig. 8. Cracking susceptibility maps. The maps show the variation of CSI during 

PBF-L of 6061 Al with (a) laser power and preheat temperature at a fixed scanning 

speed of 1300 mm/s and (b) laser power and scanning speed at fixed preheat tem- 

perature of 473 K. The beam radius was 50 μm and the layer thickness was 30 μm. 

The values in the contour represent the CSI values. The red shaded region (with CSI 

greater than 0.5) indicates a zone of crack formation while the green shaded region 

(CSI less than 0.5) indicates crack free zone. The red dots [24] and green triangles 

[26] are data points taken from literature for validation. 
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pproach is needed using mechanistic variables and data for other 

lloys to reveal insights into the cracking of the printed parts. 

. Summary and conclusions 

Here we present a physics-informed machine learning analy- 

is of cracking that considers different mechanisms of cracking of 

arious alloys under different printing conditions. The computed 

echanistic variables are then combined with the crack occurrence 

ata to find a cracking susceptibility index and the comparative in- 

uence of the most important mechanistic variables on cracking. 

We find that a user-friendly, verifiable cracking susceptibility 

ndex can predict the cracking of printed aluminum alloy parts ac- 

urately using the four mechanistic variables that embody the ef- 

ects of both process variables and alloy properties. The four mech- 
10 
nistic variables, cooling rate, the temperature gradient to solidifi- 

ation growth rate ratio, solidification stress, and the ratio of vul- 

erable and relaxation times show their relations to crack forma- 

ion using scientific principles. The solidification stress and cool- 

ng rate during solidification have the most and least influence 

n cracking, respectively for the PBF-L process variables and alloys 

tudied. The comparative influence of the four variables to crack- 

ng as determined using the coefficient of the cracking susceptibil- 

ty index matches with that found independently using informa- 

ion gain, gain ratio, and Gini index. We provide several cracking 

usceptibility maps where the CSI trends with the process vari- 

bles are in agreement with the usual industrial practice of ad- 

itive manufacturing and fusion welding. 

. Outlook 

The methodology developed and tested in this paper and the 

ndings point toward the following three unmistakable trends. 

irst, the reduction of cracking using scientific principles will help 

o enhance quality, lower the cost of printed parts, and allow ad- 

itive manufacturing of new alloys. 

Second, since the mechanistic variables embody the effects of 

he process variables and alloy properties, the suitability of various 

lloys for a manufacturing process such as printability, weldability 

r castability can be explored using the approach developed and 

ested here. For example, the occurrence of porosity and surface 

oughness in additively manufactured parts can be addressed using 

 similar approach which will reduce defects, expedite qualification 

f parts, and enable printing of several alloys . 

Third, the applicability of physics-informed machine learning to 

olve important problems is not limited to only additive manu- 

acturing. The trend of variables needed to lower the occurrence 

f cracking is consistent with the industrial experience in fusion 

elding and casting. Thus, the approach will benefit other impor- 

ant manufacturing processes. 
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ppendix 

1. Pearson’s correlation for evaluating mutual independence of 

ariables 

Variables used in ML may be mutually dependent on each 

ther. Most ML algorithms cannot distinguish between these highly 

orrelated variables. Therefore, dimensionality reduction by remov- 

ng highly correlated variables is needed in the data preprocessing 

https://doi.org/10.1016/j.actamat.2021.117612
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Fig. A1. Correlation between variables using Pearson’s correlation. 
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sulting composition change is not considered. 
tep. Sets of highly correlated variables were identified using Pear- 

on’s correlation on the estimated values of the mechanistic vari- 

bles. 

( x 1 , x 2 ) = 

COV ( x 1 , x 2 ) 

σx 1 σx 2 

(A1) 

here ρ is Pearson’s coefficient, x1 and x2 are two variables, COV 

s the covariance function, and σ represents the standard deviation 

f the variables. The mechanistic variables that may affect solidifi- 

ation cracking are temperature gradient (G), solidification growth 

ate (R), cooling rate ( τ ) which is G times R, solidification morphol- 

gy ( ε) which is the ratio of G and R, mushy zone volume (M), as-

ect ratio of the molten pool represented by pool length to width 

atio ( η), the ratio of vulnerable to relaxation time ( β) and solid-

fication stress ( σ ). Pearson’s correlation analysis can help us find 

he variables that can be used in machine learning without hav- 

ng the problem of mutual dependence. Pearson’s coefficient varies 

etween −1 and 1 wherein −1 indicates a strong negative correla- 

ion and 1 indicates a strong positive correlation ( Fig. A1 ). Among 

ighly correlated variables, only one is used for further analysis 

sing ML. Pearson’s correlation of greater than 0.5 has been used 

s a safe limit to determine whether variables are strongly corre- 

ate or not [ 44 , 45 ]. For example, the variable solidification stress

 σ ) has a high negative correlation with mushy zone volume (M). 

ince solidification cracking needs at least one mechanical crite- 

ion, the variable M is dropped, and σ is retained. Similarly, pool 

spect ratio ( η) has a high correlation to all solidification parame- 

ers like cooling rate ( τ ), solidification morphology ( ε), and solidi- 

cation growth rate (R). However, these solidification variables are 

undamentally more important to cracking than the dimensional 

arameter of ( η). Similarly, between ε and R, ε is retained as it 

ontrols the solidification morphology, and it also contains R. This 

xercise results in a total of 4 mechanistic variables, solidification 
11 
tress ( σ ), the ratio of vulnerable time to relaxation time ( β), so- 

idification morphology ( ε) and cooling rate ( τ ) which are used in 

he ML analysis. 

2. Heat transfer and fluid flow model 

A transient, 3D heat transfer and fluid flow model [21] of pow- 

er bed fusion process was used to compute the mechanistic vari- 

bles that affect cracking. The model considers the process pa- 

ameters and thermophysical properties of alloys as inputs and 

rovides temperature and velocity distributions in three dimen- 

ions from which the four mechanistic variables were computed. 

he properties of the three aluminum alloys utilized in the model 

re given in Table 1 . The model and its implementation in PBF- 

 were described in our earlier publication [ 21 , 47 ]. The compu- 

ational domain contains the powder bed, deposited layers, sub- 

trate, and shielding gas. An in-house Fortran code was developed 

or modeling which was compiled using an Intel Fortran Compiler. 

he model was run 102 times to compute the mechanistic vari- 

bles corresponding to all 102 experimental cases. The following 

ssumptions were made. 

a) The density of solid, powder, and liquid and the viscosity of liq- 

uid are assumed to be independent of temperature. 

b) The deposited layers and hatches are assumed to have flat sur- 

faces. 

c) The liquid metal is assumed to be Newtonian and incompress- 

ible. 

d) The loss of alloying elements due to vaporization and the re- 
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3. Scheil curve 

The Scheil curve represents the relation between the tem- 

erature and solid fraction during the solidification of an alloy. 

ig. A2 shows the Schiel curves for different aluminum alloys con- 

idered in this work. The Scheil curves were simulated using a 

ommercial software ThermoCalc. 

ig. A2. The variation of square root of fraction solid (f s ) with temperature dur-

ng solidification of different aluminum alloys. The maximum slope (|dT/d(f s ) 
1/2 |) of 

emperature versus (f s ) 
1/2 curves is related to the susceptibility to crack formation. 
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