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ABSTRACT

Process parameters and thermophysical and mechanical properties of alloys affect cracking which remains
a major challenge in metal printing. Cracks occur because of multiple mechanisms and currently, there is
no unified mitigation strategy. Here we evaluate the effects of variables related to the physics of cracking
computed by a mechanistic model and independent experimental data using machine learning to prevent
cracking. The computed solidification stress, the ratio of the vulnerable and relaxation times, ratio of the
temperature gradient to solidification growth rate, and cooling rates and experimental data are used to
generate a cracking susceptibility index that predicts crack formation before printing. Computed values
of these four variables when used in a decision tree, support vector machines, and logistic regression
can predict crack formation with exceptional accuracy. Information gain, information gain ratio, and Gini
index-based feature selection calculations provide the same comparative influence of these four variables.
Results are presented as easy-to-use cracking susceptibility maps. Our approach can help in process op-

timization, designing new alloys, and solving problems in manufacturing beyond metal printing.

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Additive manufacturing (AM) can print unique metallic parts
that cannot be fabricated by conventional manufacturing processes
[1-3]. The powder bed fusion - Laser (PBF-L) process is a poten-
tially attractive technique to make aluminum alloy parts in various
industries due to their high strength-to-weight ratios [1-3]. Thin
layers of alloy powders are melted by a laser beam and solidified
layer upon layer to make complex parts with closely spaced fea-
tures [2,4,5]. The repeated melting and solidification often gener-
ate cracks in parts [6], which significantly degrade their mechani-
cal properties and serviceability [3,6].

The addition of inoculants [1] to form equiaxed grains and the
application of external ultrasonic energy [7] to break up the long
columnar grains have been tried to mitigate cracking. However,
the type and amounts of inoculants and the intensity of the ultra-
sound energy are determined by trials. Cracking is also prevented
by adjusting both the alloy composition and process variables such
as heat source power, scanning speed, and preheat temperature
[8-12]. The maximum slope of temperature versus square root of
solid fraction has also been suggested as a cracking susceptibility
criterion [13,14]. However, this criterion considers alloy composi-
tion and ignores process variables. Moreover, the effects of process
variables often provide conflicting trends in cracking. For example,
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rapid scanning may enhance cracking by reducing the time for the
liquid to reach the crack site [15]. However, slow scanning may re-
sult in larger pools that shrink more during solidification result-
ing in cracking [15]. Currently, there is no thorough understand-
ing of the effects of process variables and properties of alloys on
crack formation because they cannot be related to the mechanism
of cracking.

The stress accumulated during solidification plays an important
role in cracking [16]. The temperature gradients and solidification
rates affect the solidification morphology and the scale of the mi-
crostructure both of which affect crack formation [3]. In the ini-
tial period of solidification, the low solid fraction allows the lig-
uid to relax the partially solidified region. In contrast, in the fi-
nal stage of solidification, the part becomes vulnerable to cracking
because the high solid fraction obstructs the transport of the lig-
uid to the crack site. The duration of both the vulnerable and the
relaxation times are important for cracking [6]. The stress during
solidification, the ratio of vulnerable and relaxation times, solidifi-
cation morphology, and cooling rate are the mechanistic variables
that are known to affect crack formation [3,6,16]. All these mecha-
nistic variables are affected by both alloy composition and process
parameters. In addition, the mechanisms of action of each of these
mechanistic variables have been studied separately. However, what
is needed but unavailable is an in-depth understanding of the col-
lective roles of these mechanistic variables on crack formation. The
values of each of these mechanistic variables can be calculated for
each experimental condition and alloy composition using a mech-
anistic model.
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Fig. 1. A Physics-informed machine learning towards crack-free printing. Computed values of cooling rate and solidification morphology (indicated by the ratio of tem-
perature gradient and solidification growth rate) at the trailing edge of the melt pool, the ratio of vulnerable and relaxation times, and solidification stress are used in a
physics informed machine learning to accurately predict cracking during PBF-L of aluminum alloys. The combination of machine learning and mechanistic modeling gives a
cracking susceptibility index, process maps for crack-free printing, the comparative influence of the important variables, and a decision tree to predict crack formation.

Here we show that cracks in printed metallic parts can be mit-
igated by physics-informed machine learning [17,18]. The physics
of crack formation captured by the mechanistic variables is aug-
mented into machine learning (ML) [19,20] to correlate with crack-
ing occurrence for three aluminum alloys, 6061 Al, 2024 Al, and
AlSi10Mg. Our approach involves mechanistic modeling [21], ma-
chine learning, and experimental data [9,10,22-26] and is schemat-
ically represented in Fig. 1. We develop and use a cracking suscep-
tibility index to avoid cracking during PBF-L. Also, we determine
the hierarchical order of mechanistic variables on crack formation.

2. Methodology
2.1. Physics-informed machine learning

Process variables along with thermophysical and mechanical
properties of alloys affect crack formation. The twelve most im-
portant variables [1,6,12,27-29] include laser power, laser beam ra-
dius, scanning speed, layer thickness, preheat temperature, hatch
spacing, specific heat, thermal conductivity, density, solidification
range, maximum slope (|dT/d(fs)"/2]), and the Youngs modulus. To
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quantitatively resolve the effects of these variables on cracking, at
least 22 (4096) experiments using the 2-factor design of exper-
iments are needed [30]. The available experimental data do not
satisfy this requirement for forecasting cracking based on the raw
process variables and alloy properties. Currently, there is no avail-
able literature that evaluated the hierarchy of the above 12 vari-
ables and thermophysical properties.

As a solution, we use several mechanistic variables that repre-
sent the physics of crack formation. A similar analogy can be found
in fluid mechanics where the dimensionless Reynolds number is
used to represent the type of fluid flow (laminar or turbulent)
through a cylindrical pipe instead of the variables viscosity, den-
sity, velocity, and pipe diameter. In the context of metal printing,
several mechanistic variables that are based on physics and em-
body the role of multiple alloy properties and process variables can
make the calculations tractable. The existing literature on crack-
ing in fusion welding and AM points towards many such mecha-
nistic variables, such as temperature gradient [3,6,8], solidification
growth rate [3,6,8], cooling rate [3,6,8], solidification morphology
[6,8], molten pool aspect ratio [3,6,27], mushy zone size [3,6], so-
lidification stress [6,16,28], and the ratio of the vulnerable and re-
laxation times [6]. However, many of these variables are interde-
pendent. Therefore, we have performed a statistical analysis using
Pearson’s correlation (see Appendix Al) to select variables that are
independent and still represent the physics of cracking. These vari-
ables are the cooling rate during solidification [3,6,8], the ratio of
the temperature gradient to the solidification growth rate [6,8], so-
lidification stress [6,16,28], and the ratio of the vulnerable and re-
laxation times [6]. These four mechanistic variables need at least
24 = 16 experimental data to accurately predict their role in crack
formation. Here we show that a physics informed machine learning
using the combined calculated mechanistic variables predict crack
formation (Fig. 1) and highlight several unknown aspects of the
problem.

Physics informed machine learning provides physics based cor-
relation of crack formation with the mechanistic variables. For ex-
ample, the computed values of solidification growth rate and tem-
perature gradient, along with other variables can be correlated
with the formation of crack using machine learning. Lower val-
ues of the temperature gradient to solidification growth rate ra-
tio promote equiaxed grains and resist cracking. Both temperature
gradient and solidification growth rate along with other mechanis-
tic variables can be readily estimated using mechanistic models of
PBF-L that solve the Navier Stokes and energy conservation equa-
tions using alloy properties and process parameters as inputs [21].

Physics informed machine learning using the four mechanistic
variables helps lower cost, reduces experimental trials, and sheds
light on the crack formation mechanism using the current knowl-
edge base of metallurgy.

2.2. The calculation of mechanistic variables based on heat transfer
and fluid flow model

The four variables which affect crack formation are cooling rate
[31,32] during solidification (7), the ratio of the temperature gra-
dient to the solidification growth rate [3,8] (&), solidification stress
[6,16] (o), and the ratio [6] of vulnerable and relaxation times (f).
Their mechanisms of action along with the process of calculation
(Fig. 2) are discussed below.

2.2.1. The cooling rate during solidification (t)

The cooling rates, indicated by the curved lines [3] in Fig. 2a,
affect the grain size and cracking [31]. The ductility-based mod-
els relate critical strain rate to cracking. The rate of strain gener-
ated with the decrease in temperature is inversely related to the
cooling rate and the ranking of various alloys by this metric agrees
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with welding [31]. Rapid cooling also refines the grains [32] which
hinders crack propagation and reduces cracking [12]. The cooling
rates during solidification are calculated between the liquidus and
solidus isotherms at the trailing edge of the molten pool (Fig. 2c)
on the top surface where cracks commonly form [33-35]. The cool-
ing rates are calculated using a well-tested heat transfer and fluid
flow model which is discussed in the Appendix A2. The properties
of the three aluminum alloys utilized in the modeling are provided
in Table 1.

2.2.2. The ratio of temperature gradient to solidification growth rate
()

The slope of the straight lines in Fig. 2a, represents the value of
& which affects morphologies [3] of the solidified alloys. Low ratios
result in equiaxed grains often near the centerlines of the deposits
[3], (Fig. 2a). Equiaxed grains reduce the susceptibility to crack for-
mation [8]. Columnar grains form at high values of the ratio and
make the microstructure susceptible to cracking (Fig. 2a). The cal-
culation of ¢ is also performed at the same location as the cooling
rate using the heat transfer and fluid flow model (see Appendix
A2).

2.2.3. The ratio of the vulnerable and relaxation times (B)

Crack forms during the last stage of solidification [6] between
solid fractions of 0.90 and 0.99. The part is vulnerable to cracking
during this time, which needs to be viewed in comparison with
the time during which liquid feeding of the solidification shrinkage
can occur readily (Fig. 2d). It is now accepted [6,36,37] that suffi-
cient liquid feeding is available between solid fractions of 0.4 to
0.9 which helps in strain relaxation. Furthermore, beyond a solid
fraction of 0.99, the part is sufficiently strong to resist cracking
[6,36,37]. The temperatures corresponding to these solid fractions
can be estimated from the Scheil curves (see Appendix A3) for
each alloy simulated using a commercial software (ThermoCalc).
Since we have the transient temperature field from heat and fluid
flow calculations (see Appendix A2), the times corresponding to
solid fractions of 0.4, 0.9, and 0.99 can be readily obtained. There-
fore, the vulnerable and relaxation times ratio was calculated from
the computed temperature field and Scheil curve. The top surface
temperature field was used for these calculations since the cracks
originate at or near the melt pool trailing edge. The ratio of the
vulnerable and relaxation times was calculated by considering the
locations of the isotherms along the scanning direction. Solid frac-
tions of 1 and 0 correspond to solidus and liquidus temperatures of
an alloy, respectively. Similarly, the temperatures corresponding to
solid fractions of 0.40, 0.90, and 0.99 were estimated [13,14] from
the Scheil curve for each alloy (see Appendix A3). The time of so-
lidification between 0.90 and 0.99 solid fractions was obtained by
dividing the appropriate length corresponding to these solid frac-
tions by the scanning speed. A similar procedure was followed for
calculating the time for solidification between 0.40 and 0.90 solid
fractions.

2.2.4. Solidification stress (o)

A crack may initiate from the last remaining liquid in the
inter-dendritic region under high solidification stress (Fig. 2b)
[12,16,38,39]. The amount of the last remaining liquid may be ob-
tained from the Scheil plots of T vs (f;)!/2 for different aluminum
alloys (see Appendix A3). The maximum slope of these plots oc-
curs at different solid fractions between 0.90 and 0.99. A gentle
slope near the end of solidification indicates low cracking suscepti-
bility. The volume of the liquid remaining at the solid fraction cor-
responding to the maximum slope affects the solidification stress.
The calculation of the stress [38] that causes cracking is discussed
as follows.
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Fig. 2. The role of mechanistic variables on crack formation. (a) The cooling rate [33,34] affects the scale of the microstructure. The ratio of the temperature gradient to
the solidification growth rate determines the morphology of the solidification microstructure [33,34] (adapted from 34). The formation of columnar and equiaxed dendrites
at different locations of the deposit depends on the local solidification parameters (adapted from 4). (b) High solidification stress [6,12,16,36] can initiate cracking in the
inter-dendritic region during the last stage of solidification. (c) In the PBF-L process, a laser beam melts alloy powder particles to form a molten pool (red region) and the
mushy zone shown by the yellow region. (d) Insufficient liquid feeding [6,12,28,29,35] in the inter-dendrite region in the last step of solidification fails to compensate for
solidification shrinkage and causes cracking. The three points on the solid fraction versus temperature plot correspond to the specific solid fractions in the mushy zone

needed for the calculation of vulnerable and relaxation times.

The solidification stress (o) was obtained following an estab-
lished methodology [16] that considers tensile stress as positive.

_ [2Eys
Oc = a (1)

where E is the modulus of elasticity and ys is the specific surface
energy. The values of E are provided in Table 1 and ys was taken
[16] as 0.035 J/m2. The variable ‘a’ is half of the length of an inter-
nal crack. The length of the crack was estimated from the amount

of the liquid available in the mushy zone during the last stages of
solidification, i.e., for a solid fraction varying between 0.90 to 0.99
where the slope of the Scheil curve (T versus (|dT/d(fs)!/?])) is max-
imum for the three aluminum alloys. Solid fractions of 0.93, 0.97,
and 0.99 were used for 2024 Al, AlSi10Mg, and 6061 Al alloy, re-
spectively (see Appendix A3). The volume of the remaining liquid
was calculated by multiplying 0.07, 0.03, and 0.01 by the corre-
sponding mushy zone volume for 2024 Al, AlSi10Mg, and 6061 Al
alloys, respectively. The length scale of the crack was taken as the
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The temperature-dependent properties of three aluminum alloys utilized in the calculations. Here, ‘T’ represents temperature in K. The density is taken at room temper-
ature, the latent heat of fusion at the liquidus temperature, and viscosity at liquidus temperature [3,4]. The temperature dependence of density and viscosity have been

ignored in the calculations because the errors due to these simplifications are small.

Properties AA2024 AA6061 AlSi10Mg
Liquidus temperature (K) 907 925 867
Solidus Temperature (K) 768 781 831

Thermal conductivity (W/mK)
Specific heat (J/Kg K)

25.2 + 3.98 x 10T+ 7.36 x 1075T2-2.52 x 1077T3
930-6.27 x 107!1T+ 1.48 x 1073T>-4.33 x 1073T°

113+1.06 x 10> T
536.2 + 0.035T

25.2 4+ 3.98 x 10~!'T+ 7.36 x 1076T2-2.52 x 10~'T3
929-6.27 x 10T+ 1.48 x 103T2-4.33 x 107373

Density (Kg/m?) 2780 2700 2670

Latent heat of fusion (J/Kg) 297 x 103 335 x 103 425 x 103

Viscosity (Kg/m s) 1.3 x 103 15 x 1073 1.3 x 103

& (N/m K) —-0.35 x 1073 -0.40 x 1073 —-0.35 x 1073

Absorption coefficient in liquid 0.3 0.3 0.3

Absorption coefficient in powder 0.7 0.7 0.7

Modulus of elasticity (GPa) 73 68.9 65

Table 2 ] o computed values of four mechanistic variables of the 102 data sets
Range of process variables and four mechanistic variables. and the experimentally observed crack occurrence. A variable with

Process variables Range the maximum value of IG and IGR is the most important. In con-
Laser power (W) 192 - 900 trast, a variable with the maximum 1nﬂgence on cracking shc.)ul.d
Scanning speed (mm/s) 75 - 2100 have the least GI. The calculation of ranking using the mechanistic
Hatch spacing (mm) 0.07 - 0.3 variables is demonstrated in the supplementary information.
Layer thickness (mm) 0.03 - 0.1 To provide a qualitative tool to predict cracking a decision tree
Laser beam radius (mm)  0.04 - 0.1 b d he ID3 al ith 40 d. Th .
Preheat temperature (K) 298 - 773 ased on the algorithm [40] was generated. The tree is con-
Mechanistic variables Range structed using the IG value of the four mechanistic variables corre-
Solidification Stress (MPa) 456 - 10.04 sponding to 102 data. Using the highest IG, the variable stress was
Ratio of vulnerable and relaxation times ~ 0.13 - 4.67 selected as the root node. Based on the threshold the data was
Solidification parameter (Ks/mm?) 0.76 - 31.14

Cooling rate (K/s) 43,815 - 6396,480

cube root of the volume of the remaining liquid. The crack length
was found to vary between 30 um and 148 pm, which is consis-
tent with the reported [6,16] values of cracks in aluminum alloys.

2.3. Data used in the analysis

Our machine learning (ML) analysis is based on 102 literature
data sets wherein 62 cases had cracks and 40 cases were without
experimentally detected cracks [9,10, 22-25]. Each data set consists
of process variables that are paired with the presence or absence
of cracks. The four mechanistic variables were computed for each
of these 102 cases using the process variables and alloy thermo-
physical properties in a heat transfer and fluid flow model. Table 2
lists the range of the process variables and four mechanistic vari-
ables for all the experimental data sets. The process variables and
mechanistic variables for all experimental cases are given in the
supplementary document.

2.4. Machine learning (ML) algorithms

Crack formation in PBF-L parts is a classification problem for
specimens with and without cracks. Therefore, to predict crack for-
mation we used decision tree, logistic regression, and support vec-
tor machines [20] all of which are well-known classification algo-
rithms. These algorithms and their implementation are discussed
in the supplementary information section. The calculations of lo-
gistic regression and support vector machine were performed in
WEKA [40] using 102 data with 10-fold cross-validations.

The ranking of four mechanistic variables on cracking is based
on three indices, Gini index (GI), information gain (IG), and infor-
mation gain ratio (IGR). These three indices are calculated using
three commonly used ML algorithms ID 3, C4.5, and CART (classi-
fication and regression tree), respectively [20,40]. Threshold values
of each variable are used by these algorithms to separate the two
classes i.e., crack and no cracks. The ranking was calculated from

split and in succeeding steps, similar IG calculations were done on
other variables till a leaf node was achieved. Computed values of
the four mechanistic variables for a new experiment are evaluated
using the tree to predict whether the crack will form.

3. Results and discussion

The combined effects of alloy thermophysical properties and
process variables affect [41-43] the four mechanistic variables rep-
resenting the physics of crack formation. For example, the cool-
ing rate during solidification has been reported to change with
the scanning speed and laser power [3,4]. Similarly, the temper-
ature gradient to solidification growth rate ratio is affected by the
scanning speed [3,4]. Solidification stress has been reported to de-
pend on speed [41] and power [42]. The three alloys have widely
varying molten pool geometry and temperature fields which con-
trol the four mechanistic variables and hence susceptibility to crack
formation (Fig. 3). Individually none of the four computed mecha-
nistic variables can predict cracking susceptibility. However, these
four variables can accurately predict crack formation when they
are used in combination in machine learning.

3.1. Prediction of the crack formation using physics informed machine
learning

Computed values of the four mechanistic variables are used
in different ML algorithms to predict the occurrence of cracks in
printed aluminum alloy parts. The prediction of crack formation is
a classification problem with two classes of output, crack and no
crack. The decision tree is a classification-based ML tool that can
classify the input data based on the occurrence of crack formation.
The decision tree (Fig. 4a) can predict the occurrence of cracks
from the four calculated mechanistic variables. The construction
of the decision tree is explained in Section 2.4. For any new sets
of processing conditions, calculated values of the four mechanistic
variables are classified using the tree to predict crack formation.
The decision-making starts with the solidification stress and con-
tinues by checking the values of other mechanistic variables un-
til a decision is made on the crack formation. The decision tree
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Fig. 3. Calculated temperature and velocity distributions in 3D. The alloy prop-
erties and process variables significantly affect the three-dimensional temperature
and velocity distributions that are used to compute the four mechanistic variables.
The velocity fields, dominated by Marangoni convection [3], affect the tempera-
ture fields and melt pool geometry. The process variables such as the laser power
(500 W), scanning speed (2000 mm/s), layer thickness (30 pm), and beam radius
(50 pum) were kept constant for the printing of (a) 2024 Al, (b) 6061 Al and (c)
AlISi10Mg. Temperature contours are shown in the legend of each figure. Vectors
representing the velocity of fluid flow are indicated by black arrows. Their magni-
tudes can be calculated by comparing their lengths with the reference vector. X, Y,
and Z axes represent the scanning direction (positive X direction), the width, and
the depth, respectively.

is proved to be accurate in predicting crack formation as evident
from the corresponding confusion matrix (Fig. 4d). The construc-
tion of a confusion matrix and the method of computing accuracy
from that are explained in the supplementary document.
Although the decision tree provides a visual tool to predict
cracks, no quantitative correlation between the four mechanistic
variables and crack formation can be obtained. Such quantitative
relations can guide us to tune in the important variables to control
cracking. Support vector machines can provide an algebraic equa-
tion of a hyperplane that separates the specimens with or with-
out cracks (see the supplementary document). The equation of the
hyperplane contains the four mechanistic variables. For a new set
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of experiments, the calculated values of the four mechanistic vari-
ables can be used in the equation to predict the formation of crack.
Although support vector machines can predict crack formation ac-
curately (see confusion matrix in Fig. 4e) the wide variety of data
on crack formation corresponding to different values of four mech-
anistic variables makes the equation of the hyperplane cumber-
some, as explained in the supplementary document. In addition,
the presence of four input variables precludes a visual representa-
tion of the hyperplane.

The predictive performance of a regression-based model can
be very good especially for a small dataset examined here. For a
dataset with binary classes of output, logistic regression is often a
good choice. It provides an algebraic equation to correlate the four
mechanistic variables with the probability of occurrence of crack-
ing (see supplementary document for details). The ‘S’-shaped sig-
moid function fitting (Fig. 4b) of experimental data using a logistic
regression can predict the crack formation (Fig. 4f). However, the
70% accuracy of prediction is the lowest of the four classification
algorithms and the use of non-linear, probability-dependent equa-
tion is not straightforward as explained in the supplementary doc-
ument.

As an alternative to the low accuracy of the logistic regression
for the dataset used, we explored linear regression (Fig. 4b). A pre-
requisite for fitting a linear equation with four input variables is
that there must not be any interdependence among these vari-
ables. The Pearson matrix (Fig. 4c) provides the correlation coef-
ficients among the four variables. The absolute values of the cor-
relation coefficients less than 0.5 indicate no interdependence of
the variables [44,45]. Therefore, the four mechanistic variables are
linearly fitted to provide an algebraic equation that can predict
crack formation with high accuracy (see the confusion matrix in
Fig. 4g). Although the other algorithms are beneficial in the accu-
rate prediction of cracking, the linear regression can provide a sim-
ple cracking susceptibility index which can provide many insights
about crack formation as discussed below.

3.2. Cracking susceptibility index

A cracking susceptibility index (CSI) is an indicator that can pre-
dict the occurrence of cracks in printed parts using the four mech-
anistic variables that depend on process variables and alloy proper-
ties. The CSI is derived by relating the cracking frequency with the
four mechanistic variables of 102 data sets (see the supplementary
document) of literature data [9-10,22-25] for three aluminum al-
loys using linear regression. The crack occurrence is either 1 or 0
depending on whether cracks were observed or not.

The results obtained from the linear regression are used to de-
rive an easy-to-use, verifiable cracking susceptibility index (CSI)
as:

CSI=0.1820 +0.1358 +0.014¢ — 1.1 x 10787 — 0.85 (2)

where the variables o, §, €, and t indicate the computed values of
solidification stress (in MPa), the ratio of vulnerable and relaxation
times, the temperature gradient to the solidification growth rate
ratio (in K-s/mm?), and cooling rate (in K/s), respectively. Eq. (2) is
applicable for the ranges of four mechanistic variables provided in
Table 2. A high value of CSI correlates with higher cracking sus-
ceptibility. The calculated CSI values for the 102 data sets show
that the CSI has a threshold value of 0.5 (Fig. 5). This threshold
value could accurately predict all but 16 of the 102 experiments
considered. The CSI for the alloy system examined has an accuracy
of 84.3% as explained from the confusion matrix. This threshold
value of 0.5 is valid for the three aluminum alloys studied here
for the range of process conditions reported in Table 2. Threshold
values higher than 0.65 and lower than 0.45 all correctly conform
to the predictions of CSI. While all values greater than 0.65 corre-
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Fig. 4. Applications of different ML algorithms to predict crack formation. (a) A decision tree constructed using four mechanistic variables, o, ¢, B, and t to predict
crack formation in aluminum alloy printed parts. The decision-making criteria are based on the normalized values of the four variables. The methods of normalization and
the construction of the tree are explained in the supplementary document. (b) An overlay of results of logistic regression and linear regression along with the experimental
observation of crack formation. Here, 1 and 0 indicate specimens with or without cracks, respectively. The p-value for the linear regression was of the order of 10-5 (c) A
Pearson matrix indicating the correlation coefficients among the 4 mechanistic variables. Absolute values of correlation coefficients less than 0.5 indicate less interdependence
of the variables which is a prerequisite of fitting the variables using linear regression. Confusion matrices to evaluate the crack prediction ability of (d) decision tree, (e)
support vector machines, (f) logistic regression, and (g) linear regression based on occurences of cracks. The construction of these confusion matrices and the method for
predicting the accuracy of crack prediction from these matrices are described in the supplementary document. The computed accuracies of the decision tree, support vector
machines, logistic regression, and linear regression are 85.3%, 90.2%, 70%, and 84.3%, respectively.

spond to the presence of cracks and values smaller than 0.45 cor-
respond to crack-free cases, the intermediate values indicate spec-
imens with or without cracks. The origin of this deviation from
0.5 is unknown. In addition, the sign before the coefficients in
Eq. (2) indicates the type of relationship between the mechanis-

tic variable and cracking. For example, o, 8, ¢ with positive co-
efficients have a direct influence on cracking susceptibility which
increases for higher values of these variables. Similarly, the neg-
ative coefficient of cooling rate, t, indicates diminished cracking
susceptibility at higher cooling rates.
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Fig. 5. The effectiveness of the cracking susceptibility index (CSI). The cracking susceptibility index obtained from the calculated values of four mechanistic variables can
predict cracking. A threshold value of the index of 0.50 delineates the presence or absence of cracks. The required values of the four mechanistic variables needed for the
estimation of the cracking susceptibility index can be obtained from a mechanistic model. The CSI is valid within the range of variables provided in Table 2. The values of
the index for the 102-independent experimental data [9-10,22-25] are shown in the figure using different symbols. The two micrographs for PBF-L of 6061 Al alloy [9] are
consistent with the cracking susceptibility index.

Fig. 6. The comparative influence of four mechanistic variables on cracking. The comparative influence is predicted using (a) the CSI from Eq. (2) (b) the information
gain (IG) (c) the information gain ratio (IGR) and (d) the Gini index (GI). The variables o, 8, ¢, and 7 indicate the computed values of solidification stress (in MPa), the ratio
of vulnerable and relaxation times, the temperature gradient to the solidification growth rate ratio (in K-s/mm?), and cooling rate (in K/s) respectively.



B. Mondal, T. Mukherjee and T. DebRoy

The calculated values of CSI can be used to predict cracking sus-
ceptibility before printing. The values of CSI higher than 0.5 in-
dicate the formation of cracks. An example, considering two sets
of experimental data with and without cracks in PBF-L of 6061
Al is shown in Fig 5 [9]. The calculated values of CSI for those
two experimental cases are shown in Fig. 5 which agrees with
their respective experimental finding. Since the calculation of CSI
is based on data collected from different sources, the difference
due to machine-to-machine variations in part quality is implicitly
accounted for in this approach.

3.3. Comparative influence of variables and cracking susceptibility
maps

The comparative influence of the four mechanistic variables on
crack formation is evaluated using their respective coefficients in
Eqg. (2). The midrange values of the four mechanistic variables are
multiplied with their respective coefficients (Table 2) to evaluate
their impacts. Solidification stress is found to be the most impor-
tant factor affecting cracking followed by the ratio of the vulnera-
ble and the relaxation times and the temperature gradient to the
solidification growth rate ratio (Fig. 6a). The cooling rate has the
least influence on cracking (Fig. 6a). The three classification indices
of ML, IG (Fig. 6b), IGR (Fig. 6¢), and GI (Fig. 6d) also show the
same comparative influence as above. The calculations of the three
indices are described in the supplementary document. Solidifica-
tion stress has the highest values of both IG and IGR indicating its
role as the most influential variable affecting cracking. It also has
the lowest value of GI which further ascertains its most important
contribution towards the crack formation. The comparative influ-
ence of variables on cracking will help to select appropriate values
of variables to avoid crack formation.

Five cases each for crack (Fig 7a) and crack-free (Fig 7b) condi-
tions were randomly selected from the 102 data and paired with
their four computed mechanistic variables and the crack suscep-
tibility index. The bar graphs in Fig. 7(a) represent the contribu-
tion of the individual mechanistic variables to the values of CSI
In all five cases, the prominent influence of solidification stress is
apparent from its large contribution. The contribution of solidifi-
cation stress was so large that the control of solidification mor-
phology in many cases will not guarantee crack-free deposition. In
all cases, the ratio of vulnerable times to relaxation times was the
second most contributing factor in the crack formation. In con-
trast, the contribution of the cooling rate is negligible in all five
cases. The solid line in this plot represents the values of CSI for
the five cases computed using Eq. (2). In all five cases, the CSI val-
ues higher than 0.5 indicate the high susceptibility to crack for-
mation. Fig. 7b shows the results of five specimens that showed
the absence of cracks. Again the main contributor for the high sus-
ceptibility was the solidification stress. The cooling rate shows a
beneficial contribution by reducing cracks due to its negative coef-
ficient in Eq. (2). However, when the contributions of each mecha-
nistic variable were added together, the computed CSI values were
each lower than 0.5 indicating a high propensity of avoiding cracks
as shown by the solid line. The figures show that although the
contributions by the individual mechanistic variables vary in dif-
ferent cases, it is the combined effect that determines the suscep-
tibility of crack formation and consideration of an individual factor,
no matter how important, cannot provide a complete view of the
susceptibility to crack formation.

The calculated CSI for various processing conditions is used to
generate cracking susceptibility maps which show process win-
dows to avoid cracks (Fig. 8a and 8b). The CSI in these maps shows
a trend that is observed in the existing methodology to control
cracking. For example, prevention of cracking (low CSI) by increas-
ing the preheat temperature is a well-recognized technique used
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Fig. 7. The contribution of the four mechanistic variables on cracking suscep-
tibility index (CSI). The individual contributions of the four mechanistic variables
on CSI along with the CSI values are shown for five experiments from the literature
with both the (a) presence and (b) absence of cracks. The CSI increases with the in-
creasing ratio of the temperature gradient to growth rate, solidification stress, and
the ratio of vulnerable and relaxation times because of their positive coefficients in
Eq. (2). The cooling rate shows a beneficial contribution due to their negative co-
efficients in Eq. (2). Cracks were observed at CSI higher than 0.5 while values less
than 0.5 had no cracks.

in both fusion welding as well as in additive manufacturing. In
addition, we consider several experimental data with and without
cracks for PBF-L of 6061 Al from the literature [24,26] to evaluate
the applicability of the maps. The CSI values for these experiments
indicated in both Fig. 8a and 8b agrees with their respective exper-
imental evidence.

The preheat temperature, speed, and power affect the different
mechanistic variables differently. These mechanistic variables can
change widely depending on the process variables. The CSI maps
(Fig 8a and 8b) can provide a practical approach to address the
cracking issue. High powers and high preheat temperatures are
used to control cracking [9, 46]. Changes in layer thickness and
hatch spacing do not significantly affect the CSI because they do
not change the mechanistic variables considerably. For example,
the cooling rate changes by 2.6% for a change in layer thickness
from 25 um to 35 wm when other parameters are kept constant
[47]. Similarly, the cooling rate changes only 2.8% for a change in
hatch spacing from 35 wm to 110 um [47]. Therefore, in the range
of layer thickness and hatch spacing that are typically used in PBF-
L, significant changes in the four mechanistic variables and CSI will
not occur. The ML approach in this work applies to the aluminum
alloys and the range of process conditions indicated. A similar ML
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Fig. 8. Cracking susceptibility maps. The maps show the variation of CSI during
PBF-L of 6061 Al with (a) laser power and preheat temperature at a fixed scanning
speed of 1300 mm/s and (b) laser power and scanning speed at fixed preheat tem-
perature of 473 K. The beam radius was 50 xm and the layer thickness was 30 pm.
The values in the contour represent the CSI values. The red shaded region (with CSI
greater than 0.5) indicates a zone of crack formation while the green shaded region
(CSI less than 0.5) indicates crack free zone. The red dots [24] and green triangles
[26] are data points taken from literature for validation.

approach is needed using mechanistic variables and data for other
alloys to reveal insights into the cracking of the printed parts.

4. Summary and conclusions

Here we present a physics-informed machine learning analy-
sis of cracking that considers different mechanisms of cracking of
various alloys under different printing conditions. The computed
mechanistic variables are then combined with the crack occurrence
data to find a cracking susceptibility index and the comparative in-
fluence of the most important mechanistic variables on cracking.

We find that a user-friendly, verifiable cracking susceptibility
index can predict the cracking of printed aluminum alloy parts ac-
curately using the four mechanistic variables that embody the ef-
fects of both process variables and alloy properties. The four mech-
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anistic variables, cooling rate, the temperature gradient to solidifi-
cation growth rate ratio, solidification stress, and the ratio of vul-
nerable and relaxation times show their relations to crack forma-
tion using scientific principles. The solidification stress and cool-
ing rate during solidification have the most and least influence
on cracking, respectively for the PBF-L process variables and alloys
studied. The comparative influence of the four variables to crack-
ing as determined using the coefficient of the cracking susceptibil-
ity index matches with that found independently using informa-
tion gain, gain ratio, and Gini index. We provide several cracking
susceptibility maps where the CSI trends with the process vari-
ables are in agreement with the usual industrial practice of ad-
ditive manufacturing and fusion welding.

5. Outlook

The methodology developed and tested in this paper and the
findings point toward the following three unmistakable trends.
First, the reduction of cracking using scientific principles will help
to enhance quality, lower the cost of printed parts, and allow ad-
ditive manufacturing of new alloys.

Second, since the mechanistic variables embody the effects of
the process variables and alloy properties, the suitability of various
alloys for a manufacturing process such as printability, weldability
or castability can be explored using the approach developed and
tested here. For example, the occurrence of porosity and surface
roughness in additively manufactured parts can be addressed using
a similar approach which will reduce defects, expedite qualification
of parts, and enable printing of several alloys .

Third, the applicability of physics-informed machine learning to
solve important problems is not limited to only additive manu-
facturing. The trend of variables needed to lower the occurrence
of cracking is consistent with the industrial experience in fusion
welding and casting. Thus, the approach will benefit other impor-
tant manufacturing processes.
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Appendix

Al. Pearson’s correlation for evaluating mutual independence of
variables

Variables used in ML may be mutually dependent on each
other. Most ML algorithms cannot distinguish between these highly
correlated variables. Therefore, dimensionality reduction by remov-
ing highly correlated variables is needed in the data preprocessing
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Fig. A1. Correlation between variables using Pearson’s correlation.

step. Sets of highly correlated variables were identified using Pear-
son’s correlation on the estimated values of the mechanistic vari-
ables.

COV (x1,x2)

x1,x2) =
IO( ) Ox10x2

(A1)
where p is Pearson’s coefficient, x1 and x2 are two variables, COV
is the covariance function, and o represents the standard deviation
of the variables. The mechanistic variables that may affect solidifi-
cation cracking are temperature gradient (G), solidification growth
rate (R), cooling rate (t) which is G times R, solidification morphol-
ogy () which is the ratio of G and R, mushy zone volume (M), as-
pect ratio of the molten pool represented by pool length to width
ratio (n), the ratio of vulnerable to relaxation time (f) and solid-
ification stress (o). Pearson’s correlation analysis can help us find
the variables that can be used in machine learning without hav-
ing the problem of mutual dependence. Pearson’s coefficient varies
between —1 and 1 wherein —1 indicates a strong negative correla-
tion and 1 indicates a strong positive correlation (Fig. A1). Among
highly correlated variables, only one is used for further analysis
using ML. Pearson’s correlation of greater than 0.5 has been used
as a safe limit to determine whether variables are strongly corre-
late or not [44,45]. For example, the variable solidification stress
(o) has a high negative correlation with mushy zone volume (M).
Since solidification cracking needs at least one mechanical crite-
rion, the variable M is dropped, and o is retained. Similarly, pool
aspect ratio (1) has a high correlation to all solidification parame-
ters like cooling rate (t), solidification morphology (&), and solidi-
fication growth rate (R). However, these solidification variables are
fundamentally more important to cracking than the dimensional
parameter of (). Similarly, between ¢ and R, ¢ is retained as it
controls the solidification morphology, and it also contains R. This
exercise results in a total of 4 mechanistic variables, solidification

1

stress (o), the ratio of vulnerable time to relaxation time (8), so-
lidification morphology (&) and cooling rate (t) which are used in
the ML analysis.

A2. Heat transfer and fluid flow model

A transient, 3D heat transfer and fluid flow model [21] of pow-
der bed fusion process was used to compute the mechanistic vari-
ables that affect cracking. The model considers the process pa-
rameters and thermophysical properties of alloys as inputs and
provides temperature and velocity distributions in three dimen-
sions from which the four mechanistic variables were computed.
The properties of the three aluminum alloys utilized in the model
are given in Table 1. The model and its implementation in PBF-
L were described in our earlier publication [21,47]. The compu-
tational domain contains the powder bed, deposited layers, sub-
strate, and shielding gas. An in-house Fortran code was developed
for modeling which was compiled using an Intel Fortran Compiler.
The model was run 102 times to compute the mechanistic vari-
ables corresponding to all 102 experimental cases. The following
assumptions were made.

(a) The density of solid, powder, and liquid and the viscosity of lig-
uid are assumed to be independent of temperature.

(b) The deposited layers and hatches are assumed to have flat sur-
faces.

(c) The liquid metal is assumed to be Newtonian and incompress-
ible.

(d) The loss of alloying elements due to vaporization and the re-
sulting composition change is not considered.
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A3. Scheil curve

The Scheil curve represents the relation between the tem-
perature and solid fraction during the solidification of an alloy.
Fig. A2 shows the Schiel curves for different aluminum alloys con-
sidered in this work. The Scheil curves were simulated using a
commercial software ThermoCalc.

Fig. A2. The variation of square root of fraction solid (f;) with temperature dur-
ing solidification of different aluminum alloys. The maximum slope (|dT/d(f;)'/?|) of
temperature versus (fs)'/2 curves is related to the susceptibility to crack formation.

References

[1] T. DebRoy, T. Mukherjee, H.L. Wei, ].W. Elmer, J.0. Milewski, Metallurgy, mech-
anistic models and machine learning in metal printing, Nat. Rev. Mater. 6
(2021) 48-68.

[2] T. DebRoy, T. Mukherjee, J.O. Milewski, JW. Elmer, B. Ribic, ].J. Blecher,

W. Zhang, Scientific, technological and economic issues in metal printing and

their solutions, Nat. Mater. 18 (2019) 1026-1032.

T. DebRoy, H.L. Wei, ].S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski,

A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metal-

lic components - process, structure and properties, Prog. Mater. Sci. 92 (2018)

112-224.

H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy,

Mechanistic models for additive manufacturing of metallic components, Prog.

Mater. Sci. 116 (2021) 100703.

T. DebRoy, H.K.D.H. Bhadeshia, Innovations in Everyday Engineering Materials,

1st ed., Springer, Switzerland, 2021.

[6] Y. Li, H. Li, L. Katgerman, Q. Du, J. Zhang, L. Zhuang, Recent advances in hot
tearing during casting of aluminium alloys, Prog. Mater. Sci. 117 (2021) 100741.

[7] CJ. Todaro, M.A. Easton, D. Qiu, D. Zhang, M]. Bermingham, EW. Lui,
M. Brandt, D.H. StJohn, M. Qian, Grain structure control during metal 3D print-
ing by high-intensity ultrasound, Nat. Commun. 11 (2020) 142.

[8] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock,
3D printing of high-strength aluminium alloys, Nature 549 (2017) 365-369.

[9] S.z. Uddin, L. EMurr, C.A. Terrazas, P. Morton, D.A. Roberson, R.B. Wicker, Pro-
cessing and characterization of crack-free aluminum 6061 using high-tempera-
ture heating in laser powder bed fusion additive manufacturing, Add. Manufac.
22 (2018) 405-415.

[10] H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng, Selective laser melting of high strength
Al-Cu-Mg alloys: processing, microstructure and mechanical properties, Mater.
Sci. Eng. A 656 (2016) 47-54.

[11] A. Aversa, G. Marchese, A. Saboori, E. Bassini, D. Manfredi, S. Biamino,
D. Ugues, P. Fino, M. Lombardi, New aluminum alloys specifically designed for
laser powder bed fusion: a review, Materials. 12 (2019) 1007.

[12] T. Boellinghaus, ].C. Lippold, C.E. Cross, Cracking Phenomena in Welds IV,
Springer International Publishing, Switzerland, 2016.

[13] T. Soysal, S. Kou, A simple test for assessing solidification cracking suscepti-
bility and checking validity of susceptibility prediction, Acta Mater 143 (2018)
181-197.

[14] J. Liu, S. Kou, Susceptibility of ternary aluminum alloys to cracking during so-
lidification, Acta Mater 125 (2017) 513-523.

[15] N. Coniglio, C.E. Cross, Effect of weld travel speed on solidification cracking
behavior. Part 1: weld metal characteristics, Int. ] Adv. Manufact. Technol. 107
(2020) 5011-5023.

[3

[4]

[5

12

Acta Materialia 226 (2022) 117612

[16] J.A. Williams, A.RE. Singer, Deformation, strength, and fracture above the
solidus temperature, J. Inst. Metal. 96 (1968) 5-11.

[17] M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: learning veloc-
ity and pressure fields from flow visualizations, Science 367 (2020) 1026-1030.

[18] S. Karimpoulia, P. Tahmasebi, Physics informed machine learning: seismic wave
equation, Geosci. Front. 11 (2020) 1993-2001.

[19] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436-444.

[20] ILM. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and
prospects, Science 349 (2015) 255-260.

[21] T. Mukherjee, H.L. Wei, A. De, T. DebRoy, Heat and fluid flow in additive man-
ufacturing—Part I: modeling of powder bed fusion, Comput. Mater. Sci. 150
(2018) 304-313.

[22] C.E. Roberts, D. Bourell, T. Watt, J. Cohen, A novel processing approach for ad-
ditive manufacturing of commercial aluminum alloys, Phys. Proced. 83 (2016)
909-917.

[23] E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Additive manufactured
AlSi10Mg samples using selective laser melting (SLM): microstructure, high cy-
cle fatigue, and fracture behavior, Mater. Des. 34 (2012) 159-169.

[24] A.H. Maamoun, Y.F. Xue, M.A. Elbestawi, S.C. Veldhuis, Effect of selective laser
melting process parameters on the quality of Al alloy parts: powder character-
ization, density, surface roughness, and dimensional accuracy, Materials (Basel)
11 (2018) 2343.

[25] D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Biiltmann, High
power selective laser melting (HP SLM) of aluminum parts, Phys. Proced. 12
(2011) 271-278.

[26] LE. Loh, Z.H. Liu, D.Q. Zhang, M. Mapar, S.L. Sing, CK. Chua, W.Y. Yeong, Se-
lective Laser Melting of aluminium alloy using a uniform beam profile, Virtual
Phys Prototyp 9 (2014) 11-16.

[27] G. Agarwal, A. Kumar, L.M. Richardson, M.J.M. Hermans, Evaluation of solidifi-
cation cracking susceptibility during laser welding in advanced high strength
automotive steels, Mater. Des. 183 (2019) 108104.

[28] T. Soysal, S. Kou, Role of liquid backfilling in reducing solidification cracking in
aluminium welds, Sci. Technol. Weld. Join. 25 (2020) 415-421.

[29] G. Agarwal, M. Amirthalingam, S.C. Moon, RJ. Dippenaar, L.M. Richardson,
M.J.M. Hermans, Experimental evidence of liquid feeding during solidification
of a steel, Scripta Mater 146 (2018) 105-109.

[30] J. Antony, Design of Experiments for Engineers and Scientists, 2nd Ed., Elsevier,
Netherlands, 2014.

[31] N. Coniglio, C.E. Cross, Initiation and growth mechanisms for weld solidifica-
tion cracking, Int. Mater. Rev. 58 (2013) 375-397.

[32] M.A. Easton, D.H. StJohn, Improved prediction of the grain size of aluminum
alloys that includes the effect of cooling rate, Mater. Sci. Eng. A. 486 (2008)
8-13.

[33] H.L. Wei, J.W. Elmer, T. DebRoy, Three-dimensional modeling of grain struc-
ture evolution during welding of an aluminum alloy, Acta Mater 126 (2017)
413-425.

[34] S. Kou, Welding Metallurgy, 3rd ed., John Wiley & Sons Inc., New Jersey, 2020.

[35] S. Geng, P. Jiang, X. Shao, G. Mi, H. Wu, Y. Ai, C. Wang, C. Han, R. Chen,
W. Liu, Y. Zhang, Effects of back-diffusion on solidification cracking susceptibil-
ity of Al-Mg alloys during welding: a phase-field study, Acta Mater 160 (2018)
85-96.

[36] N. Coniglio, C.E. Cross, Effect of weld travel speed on solidification cracking be-
havior. Part 3: modeling, Int. . Adv. Manufact. Technol. 107 (2020) 5039-5051.

[37] T.W. Clyne, M. Wolf, W. Kurz, The effect of melt composition on solidification
cracking of steel, with particular reference to continuous casting, Metal. Trans.
B 13 (1982) 259-266.

[38] L. Aucott, D. Huang, H.B. Dong, S.W. Wen, ].A. Marsden, A. Rack, A. C. F. Cocks,
Initiation and growth kinetics of solidification cracking during welding of steel,
Sci. Rep. 7 (2017) 1-10.

[39] J. Liu, P. Zeng, Y. Wu, S. Kou, Determination of tensile strain causing solidifica-
tion cracking in welding, Sci. Technol. Weld. Join. 25 (2020) 431-437.

[40] WEKA 3.8.5, University of Waikato, New Zealand, 1999-2020 available athttps:
|//www.cs.waikato.ac.nz/ml/weka/ accessed on 08/15/2020.

[41] C. Barr, S.D.Sun Sun, M. Easton, N. Orchowski, N. Matthews, M. Brandt, In-
fluence of macrosegregation on solidification cracking in laser clad ultra-high
strength steels, Surf. Coat. Technol. 340 (2018) 126-136.

[42] G. Liu, D. Du, K. Wang, Z. Pu, B. Chang, Hot cracking behavior and mechanism
of the IC10 directionally solidified superalloy during laser re-melting, Vacuum
181 (2020) 109563.

[43] M. Opprecht, J.P. Garandet, G. Roux, C. Flament, M. Soulier, A solution to the
hot cracking problem for aluminium alloys manufactured by laser beam melt-
ing, Acta Mater 197 (2020) 40-53.

[44] D. Dai, T. Xu, X. Wei, G. Ding, Y. Xu, ]. Zhang, H. Zhang, Using machine learning
and feature engineering to characterize limited material datasets of high-en-
tropy alloys, Comput. Mater. Sci. 175 (2020) 09618.

[45] C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su,

Machine learning assisted design of high entropy alloys with desired property,

Acta Mater 170 (2019) 109-117.

H. Hyer, L. Zhou, A. Mehta, S. Park, T. Huynh, S. Song, Y. Bai, K. Cho,

B. McWilliams, Y. Sohn, Composition-dependent solidification cracking of alu-

minum-silicon alloys during laser powder bed fusion, Acta Mater 208 (2021)

116698.

T. Mukherjee, H.L. Wei, A. De, T. DebRoy, Heat and fluid flow in additive man-

ufacturing—Part II: powder bed fusion of stainless steel, and titanium, nickel

and aluminum base alloys, Comput. Mater. Sci. 150 (2018) 369-380.

[46]

[47]


http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0001
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0001
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0001
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0001
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0001
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0001
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0002
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0002
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0002
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0002
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0002
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0002
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0002
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0002
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0005
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0005
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0005
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0010
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0010
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0010
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0010
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0010
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0010
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0011
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0011
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0011
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0011
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0011
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0011
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0011
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0011
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0011
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0011
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0012
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0012
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0012
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0012
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0013
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0013
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0013
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0014
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0014
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0014
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0015
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0015
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0015
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0016
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0016
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0016
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0017
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0017
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0017
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0017
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0018
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0018
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0018
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0019
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0019
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0019
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0019
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0020
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0020
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0020
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0021
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0021
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0021
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0021
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0021
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0022
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0022
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0022
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0022
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0022
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0023
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0023
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0023
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0023
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0023
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0024
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0024
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0024
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0024
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0024
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0026
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0026
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0026
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0026
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0026
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0026
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0026
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0026
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0027
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0027
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0027
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0027
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0027
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0028
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0028
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0028
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0030
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0030
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0031
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0031
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0031
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0032
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0032
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0032
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0033
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0033
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0033
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0033
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0034
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0034
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0036
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0036
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0036
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0037
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0037
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0037
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0037
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0039
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0039
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0039
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0039
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0039
https://www.cs.waikato.ac.nz/ml/weka/
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0041
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0041
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0041
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0041
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0041
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0041
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0041
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0042
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0042
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0042
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0042
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0042
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0042
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0047
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0047
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0047
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0047
http://refhub.elsevier.com/S1359-6454(21)00990-3/sbref0047

	Crack free metal printing using physics informed machine learning
	1 Introduction
	2 Methodology
	2.1 Physics-informed machine learning
	2.2 The calculation of mechanistic variables based on heat transfer and fluid flow model
	2.2.1 The cooling rate during solidification (&#x03C4;)
	2.2.2 The ratio of temperature gradient to solidification growth rate (&#x03B5;)
	2.2.3 The ratio of the vulnerable and relaxation times (&#x03B2;)
	2.2.4 Solidification stress (&#x03C3;)

	2.3 Data used in the analysis
	2.4 Machine learning (ML) algorithms

	3 Results and discussion
	3.1 Prediction of the crack formation using physics informed machine learning
	3.2 Cracking susceptibility index
	3.3 Comparative influence of variables and cracking susceptibility maps

	4 Summary and conclusions
	5 Outlook
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	Appendix
	A1 Pearson’s correlation for evaluating mutual independence of variables
	A2 Heat transfer and fluid flow model
	A3 Scheil curve

	References


