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Preface to the special issue ‘Additive Manufacturing’ 

With the ability to overcome deficiencies of current manufacturing 
techniques, additive manufacturing (AM) otherwise known as 3D 
printing is gaining widespread usage in aerospace, medical, energy, 
automotive, consumer products, and other industries. AM has been used 
for rapid prototyping for several decades, but with continuing im-
provements in hardware and software, we now use it to manufacture 
parts that could not be easily and economically made before. Examples 
include intricate metallic parts with fine and closely spaced features, 
customized components such as patient-specific medical implants, 
components with internal cooling channels, parts with site-specific 
chemical composition and properties, lattice structures and truss net-
works with optimized strength to weight ratios. The AM process has a 
short lead time, and we can now print many parts as a single unit that 
previously required assembly. The same equipment can produce very 
different parts, especially legacy parts for which the supply chains no 
longer exist. The recent available data on machine sales and the number 
of patents granted suggest the continued growth of AM in the foresee-
able future. 

In AM metals are deposited layer-upon-layer to make three- 
dimensional structures of common alloys such as steels, nickel, tita-
nium, and aluminum alloys. There are several variants of AM depending 
on the types of the power source and the feedstock, but two main 
techniques, powder bed fusion, and directed energy deposition are 
commonly used. AM is a relatively new process and it faces many sci-
entific, technological, and commercial problems [1]. Of the 5,500 
commercial alloys, only a handful are now routinely printed. The quality 
of 3D printed parts is often affected by the formation of common defects 
such as porosity, lack of fusion, and cracking [2]. These defects signif-
icantly degrade the mechanical properties and serviceability of the parts 
and lead to part rejection in extreme cases. Mitigation of defects to 
improve part quality is often performed by trial-and-error of the process 
variable adjustment. The complexity of the AM processes, the high costs 
of equipment and feedstock make the use of the current trial and error 
technique expensive and time-consuming. In addition, models can 
correlate process variables with the product attributes. As a result, when 
a model is adequately tested and validated, its use before printing can 
reduce the parameter space, save time and money, and improve quality 
[3]. 

Improving microstructure, properties, and serviceability of parts will 
require a framework that uses the theories of metallurgy with the 
emerging tools of mechanistic, statistical, and machine learning tools 
[3,4]. Connections between process variables and the geometry, 
composition, microstructure, mechanical properties, and defects for a 
given alloy based on scientific principles via modeling can expedite 
progress in this important area. The papers in this special issue provide 

examples of recent progress in this area. For example, heat transfer and 
fluid flow models [5–10] are used to predict temperature and velocity 
fields, molten pool shape, and size. Examples of modeling of solidifica-
tion structure [11], common defects such as cracking [12] and porosity 
[13,14], evolution of residual stresses [15] and mechanical response of 
parts [16] are also included in the special issue. In addition, the special 
issue provides examples of applications of data-driven techniques such 
as machine learning for reducing defects [17] and controlling mechan-
ical properties [18]. Clearly significant progress has been made in 
diverse areas. It should be recognized that work in this important area is 
just beginning. If the time taken for modeling other important 
manufacturing processes such as welding and casting provides any 
indication of the efforts needed, AM will require sustained research and 
development over many decades. 
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