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a b s t r a c t 

In the past few decades, additive manufacturing has evolved for the one-step fabrication of various com- 

plex, customized metallic components that cannot be easily and economically produced by other means. 

However, widespread applications and market penetration of such components are often hindered by the 

formation of common defects that affect part quality, reliability, and serviceability, and increase the cost. 

Here, for the first time, we show that a combination of physics-informed machine learning, mechanistic 

modeling, and experimental data can reduce the occurrence of common defects in additive manufactur- 

ing. By analyzing experimental data on the defect formation for commonly used alloys available in the 

disjointed, peer-reviewed literature, we identify several important variables that reveal the physics be- 

hind the defect formation. Values of those variables computed using a mechanistic model, when used 

in a physics-informed machine learning, provide the hierarchical importance of the variables on defect 

formation. In addition, based on the results of the physics-informed machine learning, we provide easy- 

to-use, verifiable, quantitative formalism that can be used in real-time to predict defects before experi- 

ments. The proposed methodology can help in reducing common defects such as balling, cracking, lack of 

fusion, porosity, and surface roughness, and solve other complex engineering problems beyond additive 

manufacturing. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Additive manufacturing (AM) of metallic materials is a rapidly 

rogressing field because of its capability to fabricate complex, and 

ntricate components easily and economically for aerospace, con- 

umer products, healthcare, energy, automotive, and marine indus- 

ries [ 1 –4 ]. Stainless steels [5] , aluminum [ 6 , 7 ], titanium [ 7 , 8 ], and

ickel alloys [4] are regularly printed to make customized parts 

nd other important components on demand [9] , such as patient- 

pecific medical implants [10] . Starting with a three-dimensional 

igital drawing of the part, metals are deposited layer by layer, of- 

en thinner than human hair, to form components [3] . However, 

fter about a quarter of a century of research and development, 

nly a handful of commercial alloys can be additively manufac- 

ured, and the market value of all such products now amounts to a 

egligible portion of the manufacturing economy [4] . This difficulty 

s largely attributable to the susceptibility to common defects, such 

s porosity, cracking, lack of fusion, balling, and surface roughness 

 3 , 4 ]. These defects affect part quality, reliability, and serviceability, 

nd often lead to part rejection. In addition, some defects require 

ost-processing of the part which increases cost. Therefore, AM of 
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efect-free, high-quality parts in a time-efficient and cost-effective 

ay is a major challenge to the materials community [ 1 , 2 , 4 ]. 

Currently, defects are minimized by using the traditional ap- 

roach of optimizing processing conditions by trial and error [ 11 –

6 ]. This technique is not optimum for AM because of the need to 

onduct many experiments to explore a large range of process pa- 

ameters and high costs of feedstock and machines combined with 

 changing economic culture where new products are rapidly cre- 

ted. In addition, trial-and-error tests do not always achieve the 

esired conditions to mitigate defects because of the complex na- 

ure of AM process. Prediction and control of defects require both 

heories of metallurgy and knowledge of how the process condi- 

ions and alloy properties affect the mechanisms of defect forma- 

ion [ 3 , 4 ]. Mechanistic models of AM processes can predict phys- 

cal attributes that affect defect formation such as the tempera- 

ure and velocity fields, molten pool geometry, cooling rates based 

n process variables, and thermophysical properties of alloys us- 

ng phenomenological understanding [ 27–44 ]. If this understand- 

ng is lacking but data are available on process conditions, al- 

oy properties, and defect formation, machine learning [ 45 , 46 ] can 

ake valuable contributions to control the defect formation in AM 

 47–58 ]. A synergistic application where the machine learning is 

rained using the data that capture the physics behind the defect 

https://doi.org/10.1016/j.apmt.2021.101123
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apmt
https://doi.org/10.1016/j.apmt.2021.101123
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Table 1 

Individual use of experimental trials, mechanistic models, and machine learning to reduce balling as reported in the literature. 

Approaches Examples Refs. 

Experimental 

trials 

Balls can be reduced if scanning speed is less than 1900 mm/s in AlSi10Mg parts. [11] 

Laser power greater than 75 W and scanning speed less than 290 mm/s can prevent balling in SS316 parts. [12] 

Balls can be avoided when scanning speed is greater than 60 mm/s in Co-Cr alloys. [14] 

A decrease in molten pool width and depth can cause balling for IN718 powders. [16] 

A very low laser power of 159 W and a high speed of 0.6 m/s can result in limited fusion of the substrate which may cause balls in 

SS316 alloy. 

[19] 

A low energy density with laser power of 60 W and scanning speed of 100 mm/s can result in process instability and balls in the 

L-PBF of SS316 parts. 

[20] 

Liquid particles released from the melt pool by the evaporation-driven gas flux, coupled with hydrodynamic instability may cause balls 

for austenitic stainless steel. 

[21] 

Balls can be reduced if the energy input is in the range of 1400–1700 J/mm 

3 in EOS PH1 stainless steel for L-PBF. [22] 

A low energy density may cause balling in steel powder for L-PBF. [23] 

Mechanistic 

models 

A surface model indicates that decreasing heat treatment temperature can reduce balls for Ti-6Al-4 V powder in the L-PBF process. [27] 

The local part geometry, such as staircase, may cause balling in AlSi10Mg parts estimated by a roughness prediction model. [28] 

Very low laser power may result in balling because the substrate is not melted explained by a heat source mesoscale model for 

SS316L parts. 

[29] 

Balling can be caused by surface tension’s tendency to minimize surfaces and create liquid spheres, Marangoni effect, and vapor recoil 

pressure with liquid metal ejection in L-PBF of SS316L alloy by a 3D, powder-scale model. 

[30] 

A thermal model shows that PBF parts are susceptible to balling when the ratio of pool length to pool width is greater than 2.3. [31] 

The shrinking tendency of pool induced by surface tension, and a large molten pool to depth ratio (greater than π ) may result in balls 

for Ti6Al4V alloy using five heat source models. 

[32] 

Multi-physics models show that balls can be caused by Plateau-Rayleigh instability for SS316 parts for selective laser melting (SLM). [33] 

A thermal model shows the volumetric energy density and the Plateau-Rayleigh capillary instability are the essential causes of balling 

formation for SS316 alloy. 

[34] 

Balling may be caused by the Kelvin-Helmholtz instability estimated by a comprehensive computational model for GTA welding. [35] 

Machine 

learning 

Convolution neural networks can detect balling with temporal vision information, but cannot predict and reduce balling which is more 

difficult for SS316L powders. 

[20] 

Logistic regression is used to classify balling from other defects in steel components during L-PBF, which can not predict balling before 

experiments. 

[23] 

An artificial neural network is applied to predict surface roughness with considering the heat treatment, laser power, scan pattern 

angle, and scan speed of Ti-6Al-4V alloy for L-PBF, but cannot reveal the mechanisms of balling. 

[27] 

A deep learning convolution neural network can detect and monitor the balling formation for Ti-6Al-4V and nickel alloys, but cannot 

predict and reduce balling. 

[47] 

Surface roughness is estimated for different machining processes by regression analysis, but no available ways to predict and reduce 

balling. 

[48] 

Surface texture and balling were predicted using surface images by Gaussian process regression model for Ti-6Al-4V parts, no practical 

ways to reduce balls. 

[49] 

Balling instability is examined and identified by observing melt pool features in the Inconel 718 parts for the L-PBF process, but the 

balling prediction is not available. 

[50] 
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ormation (physics-informed machine learning) and are computed 

sing a mechanistic model [ 43 , 44 ], can provide important quanti- 

ative correlations between the process attributes and defect for- 

ation. Such correlations are important because they can reduce 

he number of experiments needed to achieve low defect, high- 

uality AM parts. Here we explain the applicability, benefits, and 

delity of the approach of combining physics-informed machine 

earning, mechanistic modeling, and experimental data to reduce 

efects in AM by considering an example of a balling defect in 

aser-assisted powder bed fusion (L-PBF) for which experimental 

ata are available in the literature [ 11 –16 ]. 

Balling defects can occur under some undesirable process con- 

itions when the molten pool may suffer from instability and dis- 

ntegrate into several small, disconnected beads or balls appear- 

ng on the component surfaces [ 3 , 4 ]. The formation of balls can

equire post-processing, reduce dimensional accuracy, degrade fa- 

igue properties, and may hinder the movement of powder spread- 

ng roller which interrupts the process [ 3 , 4 ]. Several examples of

xperimental trials [ 11 –26 ], the use of mechanistic models [ 27 –

4 ], and machine learning [ 47 –58 ] to adjust process parameters 

or reducing balling defects are provided in Table 1 . Effort s have 

een made to explore the mechanistic factors impacting balling 

efects. Heat energy per unit volume of material deposited con- 

rols the melting of alloy powders which affects the balling de- 

ect [ 17 , 33 , 49 , 50 , 59 ]. Similarly, surface tension force on the top sur-

ace of the molten pool and convective flow of molten metal have 

een related to the mechanism of ball formation [ 15 , 16 , 19 , 25 , 27 –

0 , 33 , 60 –62 ]. Furthermore, balls are formed by the disintegration
2 
f the molten pool due to the hydrodynamic [ 21 , 35 ] and capillary

nstabilities [ 30 –34 , 43 , 50 ]. These important factors are quantified

n the literature and their values have been evaluated for various 

xperimental conditions and alloy compositions using mechanistic 

odels ( Table 1 ) to reduce balling defect. All of these factors de- 

end on the alloy compositions and process parameters, and the 

ffects of each factor on balling defects have been studied sepa- 

ately. However, the combined effects of these important factors 

n balling defects during L-PBF have not been investigated. 

Here we show that the approach of combining physics- 

nformed machine learning, mechanistic modeling, and experimen- 

al data can reduce defects in AM by considering an example of a 

ommon balling defect in L-PBF. The physics of balling captured 

hrough the computed values of the mechanistic variables is an- 

lyzed by a physics-informed machine learning to correlate with 

he balling occurrence data of one hundred and sixty-six inde- 

endent experiments for six commonly used alloys: AlSi10Mg [11] , 

luminum 357 [11] , stainless steel 316 [ 12 , 13 ], Co-Cr [14] , Ti6Al4V

15] and Inconel 718 [16] . Based on this approach ( Fig. 1 ) of

ombining experimental data, mechanistic modeling, and physics- 

nformed machine learning, we develop an easy-to-use, verifiable 

alling susceptibility index that can be used to predict and prevent 

alling in L-PBF. In addition, we investigate the hierarchical impor- 

ance of the mechanistic variables on balling and present balling 

usceptibility maps for six alloys. The approach used here can help 

o reduce other common defects in AM such as cracking, poros- 

ty, lack of fusion, and surface roughness for producing defect-free 

-PBF components. 
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Fig. 1. A schematic representation of the approach proposed and used in this research. The use of experimental results, mechanistic models, and physics-informed machine 

learning. The use of volumetric energy density, surface tension force, Marangoni number, Richardson number, pool aspect ratio (pool length/pool depth), and the solidification 

time computed using a mechanistic model of L-PBF in machine learning can predict balling defect. The approach of combining experimental results, mechanistic models and 

machine learning provides an easy-to-use balling susceptibility index to identify conditions for avoiding balling, hierarchical importance of variables on the balling defect, 

and balling susceptibility maps. The experimental results of ‘No balling’ and ‘Balling’ cases are adapted from [16] . 
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. Materials and methods 

.1. Why is physics-informed machine learning needed? 

Since the effects of process parameters and alloy properties are 

mportant for controlling the quality of the AM parts, it is intu- 
3 
tive to try to correlate them with the occurrence of balling de- 

ects. The process parameters are easy to measure during the ex- 

eriments, and material properties for common alloys are readily 

vailable in the literature. The ten most important parameters in- 

lude laser power, scan speed, powder diameter, beam diameter, 

ayer thickness, thermal diffusivity of alloy and shielding gas, sur- 
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Table 2 

Ranges of process parameters, material properties, and six mechanistic variables [ 11 –16 ]. 

Processed variables and alloy properties Mechanistic variables 

Parameters (unit) Range Variables (unit) Range 

Powder size ( μm) 30–75 Vol. Energy density, E (J/mm 

3 ) 1.68–672.45 

Laser power (W) 25–500 Surface tension force, F (N) 4.77 × 10 −5 – 4.57 × 10 −3 

Scan speed (mm/s) 20–3000 Marangoni number, M 1–2090 

Beam diameter (mm) 0.08–0.8 Richardson number, R 6.81 × 10 −6 – 5.83 

Layer thickness (mm) 0.03–0.25 Aspect ratio of pool, ε 1–12.76 

Thermal diffusivity of alloy at room temperature (m 

2 /s) 2.90 × 10 −6 – 7.74 × 10 −5 Solidification time of molten pool, T (s) 8.33 × 10 −5 – 0.27 

Surface tension force of alloy (N/m) 0.82–1.85 

Latent heat of fusion of alloy (J/kg) 2.09 × 10 5 – 5 × 10 5 

Liquidus temperature of alloy (K) 867–1928 

Thermal diffusivity of gas (m 

2 /s ) 1.99 × 10 −5 – 3.49 × 10 −5 

Table 3 

Thermophysical properties of six alloys used in this work. ‘T’ represents the temperature in K which varies between room temperature and solidus temperature [ 3 , 4 ]. 

Density and diffusivity values are given at room temperature. Viscosity, surface tension, and d γ /dT, where γ is surface tension and T is temperature are given at the liquidus 

temperature of alloys. 

Properties SS316 Ti-6Al-4V IN718 Co-Cr A357 AlSi10Mg 

Liquidus temperature 

(K) 

1733 1928 1609 1703 883 867 

Solidus temperature 

(K) 

1693 1878 1533 1603 855 831 

Thermal conductivity 

(W/m K) 

11.82 + 0.0106T 1.57 + 1.6 × 10 −2 T −1 

× 10 −6 T 2 
0.56 + 2.9 × 10 −2 T −7 

× 10 −6 T 2 
-0.923 + 4.15 ×
10 −2 T −1 × 10 −5 T 2 

25.2 + 0.4T + 7.4 

× 10 −6 T 2 
113 + 1.06 × 10 −5 T 

Specific heat (J/ kg K) 330.9 + 0.563T −4.015 ×
10 −4 T 2 + 9.465 × 10 −8 T 3 

492.4 + 0.025T −4.18 ×
10 −6 T 2 

360.4 + 0.026T −4 ×
10 −6 T 2 

387.4 + 0.2T −9 ×
10 −6 T 2 

928.6-0.6T + 1.5 ×
10 −3 T 2 

536.2 + 0.035T 

Density (kg/m 

3 ) 7800 4430 8100 8280 2700 2670 

Viscosity (kg/m s) 7 × 10 −3 4 × 10 −3 5 × 10 −3 5 × 10 −3 1.3 × 10 −3 1.3 × 10 −3 

Surface tension (N/m) 1.50 1.52 1.82 1.85 0.92 0.82 

Thermal diffusivity of 

alloy (m 

2 /s) 

4.12 × 10 −6 3.14 × 10 −6 2.90 × 10 −6 3.77 × 10 −6 6.84 × 10 −5 7.74 × 10 −5 

Latent heat of fusion 

of alloy (J/kg) 

2.72 × 10 5 2.84 × 10 5 2.09 × 10 5 3.14 × 10 5 5 × 10 5 4.23 × 10 5 

d γ /dT 

(N/m K) -0.40 × 10 −3 -0.26 × 10 −3 -0.37 × 10 −3 -0.37 × 10 −3 -0.35 × 10 −3 -0.35 × 10 −3 
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ace tension force of alloy, latent heat of alloy, liquidus tempera- 

ure of alloy [ 3 , 4 ]. Process parameters corresponding to one hun-

red and sixty-six experimental data sets are provided in the Sup- 

lementary document. The range of process parameters and mate- 

ial properties are listed in Table 2 . Thermo-physical properties of 

ix alloys investigated in this work are available in Table 3 . To re-

olve the roles of these parameters on the balling defect, we need 

 minimum of 2 10 (1024) reproducible experiments based on the 

2 design of experiments [63] . In addition, no comprehensive in- 

estigation of the roles of process parameters and alloy properties 

ould provide any insight into the mechanism of balling. There- 

ore, the process parameters and alloy properties are not suitable 

o use in machine learning to forecast balling using the available 

ool of literature data. 

A solution is to use mechanistic variables that represent the 

hysics of the problem. A similar example can be found in the 

ow of a Newtonian fluid through a pipe. The structure of the 

ow, laminar or turbulent, is best determined by Reynolds number 

ather than the individual values of velocity, density, and viscos- 

ty of the fluid and the pipe diameter [51] . In AM, several mech-

nistic variables have been related to the balling defect. They in- 

lude volumetric energy density, surface tension force, Marangoni 

umber, Kelvin Helmholtz hydrodynamic instability represented by 

ichardson number, capillary instability represented by pool aspect 

atio (pool length/pool depth), and solidification time of the pool. 

hese six mechanistic variables need only 2 6 (64) experimental 

ata points to forecast their effects on balling defects. These mech- 

nistic variables can be calculated using a heat transfer and fluid 

ow model which involves process parameters and alloy proper- 

ies. It will be shown that a physics-informed machine learning 

hat relies on the computed values of mechanistic variables can 
4 
orecast balling ( Fig. 1 ) and provide mechanistic insights that can- 

ot be obtained by any other means. 

Physics informed machine learning correlates the balling de- 

ect with mechanistic variables that can reveal the mechanisms 

f balling based on the laws of physics. For example, the pool as- 

ect ratio (pool length/pool depth), and other variables computed 

sing principles of physics can then be analyzed using machine 

earning to correlate them with the occurrence of balling. A high 

ool aspect ratio indicates high Plateau Raleigh capillary instability 

hich makes the pool likely to separate into small spherical balls 

o maintain the uniform capillary pressure inside the pool. All six 

echanistic variables can be calculated using a well-tested mecha- 

istic model that includes all process parameters, alloy properties, 

nd gas properties as required inputs. 

The use of physics informed machine learning based on the 

omputed mechanistic variables reduces the amount of required 

xperimental data, lowers the cost, takes the benefit of awesome 

oftware and hardware capability of the digital age, makes use of 

he rich knowledge base of metallurgy, and provides important in- 

ight about the mechanisms of balling that cannot be uncovered 

therwise. 

.2. Data sets for machine learning 

The method relies on 166 data sets from peer-reviewed articles 

 11 –16 ]. Each experimental test contains a group of high-quality 

ata of cases with the presence and absence of balling defects. 

mong 166 data sets, 81 cases with balling, and 85 cases where 

alling were not detected experimentally [ 11 –16 ]. The case number 

f each alloy is summarized in the Supplementary document. Six 

echanistic variables are found to be related to the mechanism of 
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Fig. 2. Effect of the six mechanistic variables on balling defect in L-PBF. The schematic in the center shows the L-PBF process where a laser beam melts alloy powders and 

produces a molten pool consisting of fusion zone, molten pool (red region). The effects of energy density (E), surface tension force (F), Richardson number (R), solidification 

time (T), pool aspect ratio (ε) , and Marangoni number (M) are shown from left to right. The top left figure showing balls formation due to insufficient energy density 

[ 11–19 , 22–25 , 28 , 30 , 33 , 49 , 50 , 59 ]. The bottom left figure indicates the low surface tension can cause balling [ 15 , 16 , 19 , 25 , 27 –30 , 33 , 60 –62 ]. Balls can be formed by high hydro- 

dynamic [ 21 , 35 ] and capillary instabilities [ 13 , 30 –34 , 61 , 62 ] in the top of the middle and right columns. Fast solidification with limited time for pool existing and spreading 

can result in discontinuous pool and balls [ 18 , 20 , 24 , 25 , 43 , 49 ] in the bottom of the middle column. Liquid metal flows with low velocity and low Marangoni number are 

prone to balls in bottom of right column [ 11 , 18 , 27 , 29 , 43 , 62 ] (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.). 
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alling defect formation ( Section 2.3 ). Each of the data set consists 

f six computed mechanistic variables along with the absence or 

resence of balling. The 166 experimental data sets are all marked 

ith ‘0’ or ‘1’ to represent the absence or presence of balling, re- 

pectively. Ranges of process parameters, alloy properties, and six 

omputed mechanistic variables corresponding to the 166 experi- 

ental data sets are provided in Table 2 . Thermo-physical proper- 

ies of six alloys investigated in this work are available in Table 3 .

alues of process parameters, gas properties, and six mechanistic 

ariables corresponding to 166 data sets are provided in the Sup- 

lementary document. 

.3. Six mechanistic variables and their calculation using a heat 

ransfer and fluid flow model 

The six mechanistic variables ( Fig. 2 ) that have been re- 

ated to the mechanisms of balling are volumetric energy den- 
5 
ity [ 11 –19 , 22 –25 , 28 , 30 , 33 , 49 , 50 , 59 ], Richardson number [ 21 , 35 ],

ool aspect ratio (pool length/pool depth) [ 13 , 15 , 16 , 18 , 19 , 23 , 24 , 30 –

4 , 43 , 50 , 61 , 62 , 64 , 65 ], Marangoni number [ 11 , 18 , 27 , 29 , 43 , 62 ], so-

idification time of pool [ 18 , 20 , 24 , 25 , 43 , 49 ] and surface tension

orce [ 15 , 16 , 19 , 25 , 27 –30 , 33 , 60 –62 ]. The values of the six mechanis-

ic variables are computed using a well-tested, 3D, transient, heat 

ransfer, and fluid flow model of L-PBF [ 43 , 44 ]. The inputs to the

odel are the process parameters, alloy, and gas properties, while 

he outputs from the model include the temperature and velocity 

elds in three dimensions from which the six mechanistic vari- 

bles are estimated. Details of explanation and validation about 

he model are described in previous publications [ 43 , 44 ] and are

ot repeated here. Only the salient features are indicated here. The 

odel is applied in a 3D solution domain containing the substrate, 

ower bed, deposited tracks, and shielding gas. The calculations 

re performed using an in-house Fortran code compiled using an 

ntel Fortran compiler. The temperature-dependent thermophysi- 
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al properties of the six alloys are provided in Table 3 . The model

as run for all 166 experimental cases to calculate the mechanistic 

ariables. 

The effects of the six mechanistic variables on balling ( Fig. 2 ) 

nd their calculations using the heat transfer and fluid flow model 

re described below. 

The volumetric energy density ( E) : Low energy density at a 

ow laser power and rapid scanning speed provides too little 

nergy input per unit length. The insufficient energy to form 

 proper molten pool results in a discontinuous molten pool 

hat solidify with several small balls ( Fig. 2 , top left) [ 11 –19 , 22 –

5 , 28 , 30 , 33 , 49 , 50 , 59 ]. The volumetric energy density ( E ) is ex-

ressed as [ 3 , 4 ]. 

 = 

P 

v 
(
πr 2 

) (1) 

here P is laser power, ν is scanning speed, and r is laser beam ra- 

ius. This represents the amount of energy supplied from the laser 

eat source per unit volume of material deposited. 

Richardson number ( R ) : Balls may form because of the segrega- 

ion of the pool due to its instability. The Kelvin Helmholtz hydro- 

ynamic instability is caused by the difference between the veloci- 

ies of shielding gas and the convective flow of liquid metal on the 

op surface of the molten pool ( Fig. 2 , top middle). The resulting

eposit appears similar to what is observed as the humping effect 

n fusion welding [ 36 , 37 , 40 ]. However, the literature from which

e collected the experimental data, termed this defect as balling. 

his hydrodynamic instability can be represented by a dimension- 

ess number called the Richardson number [ 21 , 35 ]. The susceptibil- 

ty to the balling defect increases with Richardson number due to 

igh pool instability [35] . Richardson number ( R ) can be calculated 

s [ 3 , 35 ]. 

 = 

gL 

( U g − U l ) 
2 

(2) 

here g is the acceleration due to gravity, L is the pool length that 

an be calculated using the 3D, transient, heat transfer, and fluid 

ow model. U g is the velocity of shielding gas, for L-PBF, which is 

ssumed to be equal to the scanning speed. U l is the maximum 

elocity of the convective flow of the liquid metal. The maximum 

elocity is found on the top surface of the pool along the scanning 

irection. 

Pool aspect ratio (ε) : Similar to the hydrodynamic instability, 

apillary instability can also disintegrate a molten pool and cause 

alling. Capillary instability of the molten pool is quantified by the 

ool aspect ratio, which is a ratio of pool length to pool depth 

 Fig. 2 , top right). When the length of the molten pool is signifi-

antly larger than its depth (high aspect ratio), the pool becomes 

nstable and breaks into small balls [ 13 , 15 , 16 , 18 , 19 , 23 , 24 , 30 –

4 , 43 , 50 , 61 , 62 , 64 , 65 ]. Pool aspect ratio (ε) is expressed by the ra-

io of pool length to the pool depth. Both pool length and pool 

epth can be calculated using the 3D, transient, heat transfer, and 

uid flow model for different process conditions and alloys. 

Surface tension force ( F ) : Surface tension maintains the integrity 

f the top surface of the molten pool ( Fig. 2 , bottom left). At low

urface tension force, the molten pool may be disintegrated and 

orms balls [ 15 , 16 , 19 , 25 , 27 –30 , 33 , 60 –62 ]. Surface tension force ( F )

s calculated as the product of the coefficient of surface tension of 

n alloy and the circumference of the molten pool on the top sur- 

ace. The coefficient of surface tension of the six alloys is provided 

n Table 3 . The circumference of the molten pool is calculated on 

he top surface assuming the pool be an ellipse. The major and 

inor axes of the elliptical pool are assumed to be the pool length 

nd width, respectively, both of which can be calculated using the 

D, transient, heat transfer, and fluid flow model. 
6 
Solidification time of molten pool ( T ) : A molten pool that solid- 

fies rapidly may not allow the molten pool to spread uniformly, 

reaks into small isolated balls, and forms a discontinuous track 

 Fig. 2 , bottom middle). The solidification time of the molten pool 

an be represented as the ratio of pool length to the scanning 

peed [ 18 , 20 , 24 , 25 , 43 , 49 ]. Solidification time ( T ) is represented by

he ratio of pool length to the scanning speed [ 3 , 4 ]. Pool length

an be calculated using the 3D, transient, heat transfer, and fluid 

ow model. 

Marangoni number ( M) : Convective flow of liquid metal driven 

rimarily by the surface tension gradient on the top surface of the 

olten pool, helps the molten metal spread uniformly to main- 

ain the continuity of the pool. This convective flow is also known 

s Marangoni flow, represented by the Marangoni number ( Fig. 2 , 

ottom right). A low Marangoni number represents a weak convec- 

ive flow that is insufficient for uniform spreading of molten liq- 

id which may cause balling defect [ 11 , 18 , 27 , 29 , 43 , 62 ]. Marangoni

umber ( M ) can be calculated as [ 3 , 4 ]. 

a = −d γ

dT 

L�T 

μα
(3) 

here, T , μ, and α are surface tension, temperature, viscosity, and 

hermal diffusivity of the alloy, respectively. The values of these 

arameters are provided in Table 3 for the six alloys. L is the pool 

ength which can be calculated using the 3D, transient, heat trans- 

er, and fluid flow model. �T is the difference between the max- 

mum temperature inside the pool and the solidus temperature 

f an alloy. The solidus temperature for six alloys is provided in 

able 3 . The maximum temperature inside the pool can be calcu- 

ated using the 3D, transient, heat transfer, and fluid flow model. 

.4. Derivation of balling susceptibility index using a genetic 

lgorithm 

The balling susceptibility index (BSI) was derived from the 166 

ets of computed values of six mechanistic variables and the ex- 

erimentally observed ball formation using a genetic algorithm 

 66 , 67 ]. The cases with the absence or presence of ball formation

re marked as either ‘0’ or ‘1’ depending on the balling susceptibil- 

ty of the alloy and process conditions. A genetic algorithm is ap- 

lied to optimize the values of the coefficients of each mechanistic 

ariable. The objective function for the genetic algorithm is a linear 

quation connecting the six mechanistic variables and balling. The 

enetic algorithm provides the coefficients corresponding to each 

ariable for BSI for the six mechanistic variables ( Table 2 ). The co-

fficients of which have the minimum square error in fitting the 

alling results using the six mechanistic variables are selected. The 

est set of parameters obtained from the genetic algorithm were 

he same as those calculated from a linear regression in MS Excel 

s well as by pseudo-inverse matrix solution using the well-known 

oore–Penrose method. 

After mathematical derivation, the BSI is validated and tested 

ith the corresponding validation and testing data sets. Both the 

alidation and testing data sets are selected randomly for the cases 

ith the presence and absence of balling. A threshold value is se- 

ected which has the minimum classification error with the min- 

mum number of wrongly predicted data points among 166 data 

oints. For both the validation and testing data sets, the calculated 

SI values are compared to the threshold value and classified into 

1’ (if BSI value is greater than the threshold) and ‘0’ (if BSI value is

ess than the threshold) for cases with and without balling, respec- 

ively, then compared the prediction results of BSI with the target 

alling results from experimental tests for prediction accuracy of 

SI. 



Y. Du, T. Mukherjee and T. DebRoy Applied Materials Today 24 (2021) 101123 

Fig. 3. 3D temperature and velocity distributions calculated using a heat transfer and fluid flow model for six alloys. The results are for 20 mm long single-track builds of (a) 

AlSi10Mg (b) A357 (c) Ti6Al4V (d) Inconel 718 (e) Co-Cr (f) stainless steel 316 made by L-PBF using 60 W laser power, 10 0 0 mm/s scanning speed, and 30 μm layer thickness 

and 50 μm beam radius. The scanning direction of the laser beam is along the positive X direction. Y and Z directions represent the width and depth direction, respectively. 

Temperature values of the contour can be predicted from the temperature contour legend provided in each figure. Black arrows in the figures represent the velocity vectors 

whose magnitude can be estimated by comparing lengths with the reference vector provided. 

Fig. 4. Balling Susceptibility Index (BSI) to predict balling in L-PBF. The index is 

calculated using Eq. (4) which is valid for the range of volumetric energy density 

(E) 1.68 to 672.45 J/mm 

3 ,surface tension force (F) 4.77 × 10 −5 to 4.57 × 10 −3 N, 

Richardson number (R) 6.81 × 10 −6 to 5.83, solidification time (T) 8.33 × 10 −5 to 

0.27 s, aspect ratio of the pool ( ε, pool length/depth) 1 to 12.76 and Marangoni 

number (M) 1 to 2090. The figure shows the index values corresponding to the 

166 experimental cases. The threshold value of the balling susceptibility index (0.5) 

which delineates the balling and no balling cases is indicated by a vertical red 

dashed line. Two insets with the presence and absence of balls for L-PBF of Inconel 

718 alloy are shown corresponding to two data points of balling susceptibility index 

[16] . The ranges of six mechanistic variables are provided in Table 2 (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.). 
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7 
.5. Calculations of hierarchical importance using feature selection 

ndexes 

The hierarchical importance of the six mechanistic variables on 

all formation is evaluated by the relative importance of each vari- 

ble in BSI, as well as three feature selection indexes, information 

ain (IG), information gain ratio (IG ratio), and Gini index [ 52 , 68 ].

hese three indexes rely on the threshold values of the mechanis- 

ic variables that approximately delineate between the cases with 

alling and the cases where balling is not observed. The hierarchi- 

al importance is estimated using the 166 sets of computed val- 

es of six mechanistic variables and the experimentally observed 

alling (‘0’ or ‘1’). The high values of information gain and informa- 

ion gain ratio show more importance which are calculated based 

n entropy [ 52 , 68 ]. In contrast, low values of the Gini index show

ore importance [ 52 , 68 ]. A set of sample calculations of hierar-

hical importance using the three algorithms are provided in the 

upplementary document. 

. Results and discussion 

The six mechanistic variables used here, volumetric energy den- 

ity, surface tension force, Marangoni number, Richardson num- 

er, pool aspect ratio (pool length/pool depth), and solidification 
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Fig. 5. Balling formation prediction ability of the machine learning. The matrices 

shown in the figure are called confusion matrices commonly used to visually repre- 

sent the prediction ability of a machine learning algorithm. (a) The basic structure 

of a confusion matrix. ‘Target’ represents the target output of the machine learning 

which is the experimental observation of balling. ‘0’ and ‘1’ indicate the absence 

and presence of balling in the part respectively. ‘Prediction’ represents the predicted 

output by machine learning. The Top left green box ‘0/0’ represents how many ‘0’ 

cases are predicted correctly. The bottom right green box ‘1/1’ represents how many 

‘1’ cases are predicted correctly. The top right orange box ‘1/0’ represents the num- 

ber of cases where experimental observation is ‘1’ but machine learning wrongly 

predicts them ‘0’. The bottom left orange box ‘0/1’ represents the number of cases 

where experimental observation is ‘0’ but machine learning wrongly predicts them 

‘1’. Accuracy of prediction can be calculated as (total numbers in top left and bot- 

tom right green boxes)/ (total number of cases). Sensitivity is calculated as (the 

bottom right green boxes)/ (all target balling cases, total of top right and bottom 

right boxes). Specificity is calculated as (the top left box)/ (all target cases without 

balling, a total of top left and bottom left boxes). For all 166 data points, 30% are 

used for testing the dataset (26 cases of ‘0’ and 24 cases of ‘1’). Confusion matrices 

are shown for (b) testing results of BSI using six mechanistic variables, with an ac- 

curacy of 90%, a sensitivity of 91.6%, and a specificity of 88.4%. The calculations of 

accuracy, sensitivity, and specificity [ 51 , 52 , 68 ] are explained in the Supplementary 

document (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.). 
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Fig. 6. The relative importance of the six mechanistic variables. The contribution 

of each of the six mechanistic variables to the balling susceptibility index (BSI) and 

the values of BSI are shown for five experimental cases [ 11 –16 ] with both the (a) 

absence and (b) presence of balling. The beneficial contributions of energy density 

(grey) and surface tension force (yellow), solidification time (green), and Marangoni 

number (pink) in preventing balling are due to their negative coefficients in Eq. (4) . 

The balling susceptibility index increases with the increase of Richardson number 

(orange) and the pool aspect ratio (blue) because of their positive coefficients in 

Eq. (4) . For the absence of balling (Fig. a), the computed BSI values are less than 

the threshold value of 0.5 ( Fig. 4 ). In contrast, the values of BSI are higher than 0.5 

when balling was found (Fig. b) (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.). 
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ime of the pool, can capture the combined effects of process pa- 

ameters and alloy properties. For example, surface tension force 

nd Marangoni number are found to depend on the laser power, 

canning speed, and material properties for AlSi10Mg, A357, and 

o-Cr alloys [ 11 , 14 ]. High capillary instability can be caused by

apid scanning for stainless steel 316 [13] . The Kelvin Helmholtz 

ydrodynamic instability results from improper process conditions 

 21 , 35 ]. The solidification time is found to be related to the scan-

ing speed and material properties [ 43 , 44 ]. The calculated val- 

es of six mechanistic variables corresponding to 166 experimen- 

al data are available in the Supplementary document, and their 

anges are listed in Table 2 . The computed molten pool shape and 

ize, and temperature fields ( Fig. 3 ) that affect the six mechanis- 

ic variables vary drastically for the six alloys resulting in different 

usceptibility to balling defect. Any of these six mechanistic vari- 

bles cannot predict the susceptibility to balling defects individu- 

lly. However, when they are used together in machine learning, 

he combined usage of these mechanistic variables can provide a 

all susceptibility index to forecast balling before experiments as 

iscussed below. 

.1. Balling susceptibility index and its experimental validation 

A balling susceptibility index (BSI) is an easy-to-use indicator 

hat can predict balling defects from the computed values of six 

echanistic variables. The BSI is derived by connecting the actual 

ccurrence of balling with the six mechanistic variables for 166 ex- 

erimental data for six alloys (Supplementary document) using a 

enetic algorithm. The data collection and implementation of the 

enetic algorithm are presented in Section 2 . 

SI = 6 . 5 × 10 

−1 + 7 . 2 × 10 

−1 R + 4 . 9 × 10 

−2 ε 

−9 . 3 × 10 

−4 M − 1 . 9 × 10 

−3 E − 9 . 6 × 10 

1 F − 4 . 5T (4) 

here the variables, R , ε, M , E , F , and T indicate the calculated val-

es of Richardson number, pool aspect ratio, Marangoni number, 

olumetric energy density (in J/mm 

3 ), surface tension force (in N), 
8 
nd solidification time of pool (in s). Eq. (4) is valid for the ranges

f the six mechanistic variables ( Table 2 ) and the six alloys investi-

ated [ 11 –16 ] ( Table 3 ). A high value of BSI indicates high suscepti-

ility to balling defect. The calculated BSI values corresponding to 

he 166 experimental data points indicate that there is a threshold 

alue of 0.5 which can delineate between the presence and ab- 

ence of balling with minimum classification error ( Fig. 4 ). 

The computed values of BSI can be used to predict balling de- 

ects for a new set of process conditions using the six mechanis- 

ic variables before doing experiments. With the six mechanistic 

ariables calculated using the well-tested, heat transfer, and fluid 

ow model of L-PBF, balls may form if the calculated BSI using the 

omputed values of mechanistic variables is higher than 0.5. For 

xample, we consider two sets of experimental data for the pres- 

nce and absence of the balls in L-PBF of Inconel 718 from the 

iterature [16] . BSI values calculated for these two cases (BSI = 0.01 

nd BSI = 0.61) are indicated in Fig. 4 which are consistent with the 

orresponding experimental evidence. The sign of the coefficients 
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Fig. 7. Hierarchical influence of six mechanistic variables on balling defect and distribution of the two most important mechanistic variables for 166 data. Marangoni number 

(M), solidification time (T), volumetric energy density (E), Richardson number (R), pool aspect ratio ( ε, pool length/depth) and surface tension force (F) have decreasing order 

of influence on ball formation estimated by (a) the relative importance in BSI equation (coefficient of each variable multiplies the middle-value of the corresponding variable 

range) and three feature selection indexes (b) information gain, (c) information gain ratio and (d) Gini index. High relative importance in BSI indicates high importance. Both 

the information gain and information gain ratio are calculated based on entropy, and the higher value indicates higher importance. The Gini index is calculated based on 

impurity, which has higher importance with a lower value. Distribution of the first and second important mechanistic variables for 166 data are plotted in (e) Marangoni 

number and (f) solidification time with heat input per unit length (laser power/scanning speed). Horizontal dashed red lines approximately separate values for ‘balling’ 

and ‘no balling’ cases. Two different experimental sets for the same stainless steel 316 alloy are marked as ‘SS316-1’ and ‘SS316-2’, respectively. Results for six mechanistic 

variables are provided in the Supplementary document. 
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n Eq. (4) indicates how a mechanistic variable influences balling. 

or example, Richardson number (R) and pool aspect ratio (ε) have 

ositive coefficients which show that balling defect increases at a 

igh value of these two variables. Similarly, negative coefficients of 

olumetric energy density ( E ), Marangoni number ( M ), surface ten- 

ion force ( F ), as well as solidification time ( T ) indicate less chance

f balling for their high values. For all 166 data points, 60% of them 

re used for training dataset (51 cases of ‘0’ and 49 cases of ‘1’), 

0% are used for validation (8 cases of ‘0’ and 8 cases of ‘1’), and

0% are used for testing dataset (26 cases of ‘0’ and 24 cases of 

1’). With rigorous mathematical derivation, validation, and testing, 

he BSI can forecast balling with 90% accuracy, 91.6% sensitivity, 

nd 88.4% specificity [ 51 , 52 , 68 ]. The testing result is represented

y the confusion matrix in Fig. 5 . Details for derivation, validation, 
i

9 
nd testing are presented in Section 2 . In addition, the relative im- 

ortance of these six mechanistic variables on balling defects can 

e estimated as discussed below. 

.2. Hierarchical importance of six mechanistic variables 

The relative importance of the six mechanistic variables on 

alling defects is evident from their relative contributions to BSI 

 Fig. 6 ) for several experimental cases with and without ball for- 

ation. Here we computed the BSI using Eq. (4) and the con- 

ribution of each variable by multiplying their coefficients in 

q. (4) with their computed values corresponding to each experi- 

ental case. For the five cases where balls are not detected exper- 

mentally, the four variables with negative coefficients have a ben- 
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Fig. 8. Balling susceptibility maps and BSI values for six alloys with various process conditions. The results are for 20 mm long single-track builds of (a) AlSi10Mg (b) A357 

(c) Ti6Al4V (d) Inconel 718 (e) Co-Cr (f) stainless steel 316 alloys made by L-PBF using the corresponding experimental setting from [ 11 –16 ]. Ranges of process parameters 

and material properties are available in Tables 2 and 3 . The process conditions which are highly likely for a balling defect with a BSI value higher than 0.5 have been marked 

with the red region for each alloy. The balling susceptibility maps have been verified by some experimental cases [ 11 –16 ] for the presence and absence of ball formation 

with ‘red’ and ‘green’ points, respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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ficial contribution to reduce BSI and prevent balling ( Fig. 6 (a)). 

n the contrast, for the five cases with balling, the two variables 

ith positive coefficients are primarily responsible for increasing 

he value of BSI and causing balling defects ( Fig. 6 (b)). 

The relative importance of the six mechanistic variables on 

alling defects can also be predicted from the coefficients of each 

ariable in Eq. (4) using the coefficients multiplied by the mid- 

alue of the range of the corresponding variable ( Table 2 ). The 
10 
arangoni number is found to be the most important factor that 

ffects balling, followed by the solidification time of the pool and 

olumetric energy density ( Fig. 7 (a)). The surface tension force 

as the least influence on the balling defect. The same hierar- 

hical importance of the six mechanistic variables on balling de- 

ect is also found using three different f eature selection indexes in 

achine learning, information gain ( Fig. 7 (b)), information gain 

atio ( Fig. 7 (c)) and Gini index ( Fig. 7 (d)) [ 52 , 68 ]. Calculations



Y. Du, T. Mukherjee and T. DebRoy Applied Materials Today 24 (2021) 101123 

o

n

m

M

d

o

t

t

a

p

(

e

o

m

3

a

i

o

p

p

r

t

a

s

v

o

f

1  

d

d

fl

e

4

m

c

r

t

w

w

a

s

n

b

m

(

(

(

f

r

i

p

t

w

o

i

D

c

D

c

i

S

f

C

o

t

C

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f these three indexes are discussed in Section 2 . The Marangoni 

umber has the highest value of both information gain and infor- 

ation gain ratio calculated based on entropy, which indicates the 

arangoni number as the most important variable for the balling 

efect. Similarly, the highest influence of the Marangoni number 

n balling is evident from its lowest value of the Gini index among 

he six variables indicating its lowest impurity in data classifica- 

ion. The distribution of the two most important mechanistic vari- 

bles, Marangoni number and solidification time for 166 data are 

lotted in Fig. 7 (e) and (f), respectively. Both variables ( Fig. 7 

e) and (f)) have shown obvious trends in delineating cases pres- 

nce and absence of balls formation. The hierarchical importance 

f variables on balling defects will guide engineers to identify the 

ost important factors to tune in to prevent balls in L-PBF. 

.3. Balling susceptibility maps and their experimental validation 

The computed values of BSI for different process conditions and 

lloys can be used to construct balling susceptibility maps indicat- 

ng the process windows for preventing balling ( Fig. 8 ). The trends 

f BSI in these maps are consistent with the common industrial 

ractice. For example, reduction of balling (at low BSI) by ensuring 

roper melting at high laser power and slow scanning is a well- 

ecognized technique used in additive manufacturing. In the maps, 

he balling susceptible zones (for BSI > 0.5) are marked with red, 

nd the safe zones (for BSI ≤ 0.5) are marked with green. For the 

ame process window, the balling susceptibility zones (red regions) 

ary widely indicating a significant contribution of alloy properties 

n the balling defect. In addition, the balling susceptibility maps 

or six alloys have been validated by some experimental data [ 11 –

6 ] for the cases with and without balling by the ‘red’ and ‘green’

ots, respectively. These maps when rigorously tested against in- 

ependent experimental data can be made available on the shop 

oor for real-time prediction of ball formation before performing 

xperiments. 

. Conclusion 

We combine physics-informed machine learning, mechanistic 

odeling, and experimental data to reduce defects in AM by 

onsidering an example of balling defects in L-PBF using peer- 

eviewed experimental data available in the literature. Based on 

his unique approach, we propose a unified, quantitative frame- 

ork to uncover the mechanism of balling and reduce defects 

hich cannot be done by any other means. Six important mech- 

nistic variables, volumetric energy density, Marangoni number, 

olidification time of the pool, surface tension force, Richardson 

umber, and molten pool aspect ratio (pool length/depth) are com- 

ined with the balling occurrence data using a physics-informed 

achine learning algorithm. Below are specific findings. 

1) We propose an easy-to-use, verifiable balling susceptibility in- 

dex that combines the effects of process parameters and alloy 

properties. The balling susceptibility index can predict balling 

defects with 90% accuracy using 166 cases. 

2) The six mechanistic variables reveal the mechanisms of balling 

defects based on scientific principles with machine learning. 

The three machine learning indices, information gain, informa- 

tion gain ratio, and Gini index show the same order of hier- 

archy of the mechanistic variables in influencing balling. The 

Marangoni number and solidification time are found to be the 

first and second most important variables on balling, respec- 

tively for the alloys and L-PBF process variables investigated 

here. 

3) We provide six balling susceptibility maps for six commonly 

used alloys where the trends of the balling susceptibility in- 

dex with the well-known L-PBF variables are consistent with 
11 
the common industrial practice for both fusion welding and ad- 

ditive manufacturing. 

The approach used here can help to reduce other common de- 

ects in AM such as cracking, porosity, lack of fusion, and surface 

oughness. Reduction of defects based on scientific principles will 

mprove part quality, reduce cost, and allow printing of new com- 

onents. In addition, new printable alloys [69] can be discovered 

o fabricate tailor-made components on demand in a cost-effective 

ay. Similarly, the proposed methodology can be useful for solving 

ther complex engineering problems beyond additive manufactur- 

ng and alloys investigated here. 
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