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A B S T R A C T

Residual stresses and distortion are common serious defects in wire-arc additive manufacturing. Commercial
thermomechanical models are often used to understand how these defects form. However, no clear mitigation
strategy has evolved from previous research. Identification of the hierarchy of variables that influence residual
stresses will help to uncover practical means of mitigating this difficulty. Here we use multiple machine learning
algorithms and a mechanistic model to rank separately both easy to measure process parameters as well as
thermomechanical variables that affect the evolution of stresses. We analyze 243 sets of residual stress data for
three alloys using random forest and neural network algorithms to uncover the relative influences of the vari-
ables. Both these algorithms predict residual stresses with 97 % accuracy. More important, both algorithms
provide the same hierarchical influence of process variables on stresses. The substrate preheat temperature is the
most influential variable among the process variables. Among the thermomechanical variables, the following
variables are the most influential in decreasing order of importance: the gap between the solidus and preheat
temperatures, the product of elastic modulus and the coefficient of thermal expansion, molten pool volume,
substrate rigidity, and heat input.

1. Introduction

Wire-arc additive manufacturing (WAAM) is widely used because of
its high deposition rate and low cost [1–3]. However, shrinkage of large
pools of liquids during solidification and repeated heating and cooling
result in high residual stresses [1] and defects such as delamination,
warping, buckling and dimensional inaccuracy [4–7]. Many simulta-
neously occurring physical processes affect the evolution of residual
stresses in the components. The resulting complexity of the process
precludes any straightforward determination of variables that could be
adjusted to reduce stresses and mitigate defects.

The effects of individual variables on the accumulation of residual
stresses have been investigated in several variants of AM. For example,
preheating of the substrates is known to reduce residual stresses and
distortions in WAAM [8]. A decrease in laser power was found to re-
duce residual stresses in components fabricated by both directed energy
deposition (DED) [9] and powder bed fusion (PBF) [10]. Besides, re-
sidual stresses along the scanning direction are decreased by increasing
scanning speed during PBF [11]. Thicker substrates are thought to in-
crease residual stresses at the substrate-deposit interface [12].

However, the aforementioned results do not identify the most im-
portant variables that influence the evolution of residual stresses. The
roles of individual variables on the evolution of stresses in a multi-
variable process are often masked by the impacts of other variables and
the complexity of the process. As a result, it is difficult to uncover the
hierarchy of the important variables.

Data-driven machine learning techniques are often beneficial to
establish relations among different sets of variables when phenomen-
ological relations among them are unavailable. Machine learning (ML)
methods have been used to predict stresses in the related field of
welding [13,14]. Both neural networks and neuro-fuzzy system models
have been used to predict residual stress distribution in pipe welds. The
performances of the two machine learning models have also been
compared [13]. It was also shown that the artificial neural network and
multi-objective optimization algorithms helped to reduce the residual
stresses and distortion in welding [15]. The application of support
vector regression and neuro-evolutionary computing were also used in
welding [16,17] based on data calculated from the finite element
models. Probabilistic kernel machine models were tested on experi-
mentally-obtained data of axial and hoop residual stresses in two
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stainless-steel pipes [18]. These examples indicate the effectiveness of
applying machine learning methods to predict residual stresses in
welding. However, there is a scarcity of literature in predicting stresses
in WAAM using machine learning methods. What is needed and not
currently available is a data-driven analysis of residual stresses in
WAAM to evaluate the hierarchy of the most important factors that
affect residual stresses.

Here, for the first time, we analyze data on residual stresses during
various conditions of WAAM using data-driven machine learning. Two
hundred and forty-three sets of data on residual stresses for single layer
deposits of three alloys, IN 718, SS 316 and 800H are analyzed. In the
appendix, we justify in detail why we consider the results of single layer
deposits for machine learning. First, hierarchical influences of easy to
measure WAAM variables such as arc power, scanning speed, substrate
preheat temperature, and substrate thickness, as well as alloy proper-
ties, e.g., yield stress, coefficient of thermal expansion, thermal diffu-
sivity and Young’s modulus on residual stresses, are investigated.
However, these process parameters are distributed over a very large
range where the effects of individual variables are concealed by the
complexity of the thermomechanical behavior of the system. There are
complex thermomechanical variables that are better representatives of
the complex evolution mechanism of residual stresses. The use of sev-
eral complex variables that cannot be easily measured compared to the
individual process variables is well-recognized in the fluid flow through
a pipe. The variables such as the diameter of the pipe, average velocity,
density and viscosity of the fluid can determine whether the flow in a
pipe is turbulent or laminar. However, the flow behavior is much better
showed by the Reynolds number than the four individual variables.
Therefore, here we separately identify five complex thermomechanical
variables that influence residual stresses and delamination. They in-
clude three thermal variables, the difference between solidus and pre-
heat temperature, liquid pool volume, heat input, and mechanical
variables, substrate rigidity, and the product of elastic modulus and
coefficient of thermal expansion.

The residual stresses are obtained using a well-tested commercial
thermomechanical model. A neural network and a random forest-based
machine learning algorithms are selected to predict their hierarchical
influences of variables that affect residual stresses. Neural network al-
gorithms have a strong ability to recognize the underlying complex
relationships between input variables and the responses [19,20]. Also, a
random forest algorithm works well with different types of input vari-
ables and is good at handling non-linear parameters efficiently [21].
Although we investigate residual stresses in WAAM of three alloys, it is
equally applicable for other alloys and AM variants.

2. Methods

The methodology for this research is shown schematically in Fig. 1.
Two types of datasets are used in machine learning as inputs. First, the
raw, unprocessed WAAM variables that are easy to measure and record
during the experiments and simple alloy properties are used. Second,
the causative variables that represent complicated thermomechanical
behavior of the system are calculated using a well-tested, thermo-
mechanical model and used in machine learning. The residual stresses
calculated by the thermomechanical model are used as the outputs of
machine learning. The details of the thermomechanical model, data
generation method and machine learning (ML) algorithms are de-
scribed below.

2.1. Thermomechanical model

A finite element method based thermomechanical model is used to
calculate 3D, transient temperature and residual stresses distributions.
The calculation procedures have been described in detail in our pre-
vious publication [4] and are not repeated here. Only a few salient
features of the model are described here. The solution domain for the
thermomechanical calculations consisting of the substrate and a single-
layer and a single-hatch deposit is shown in Fig. 2. First, temperature
fields are computed by solving the heat conduction equation [22]
where the heat input is applied as a double ellipsoidal heat source [4].
The heat losses by convection and radiation from the surfaces of the
deposit and substrate are applied as boundary conditions. Temperature-
dependent thermophysical and mechanical properties of the alloys used
in the calculations are provided in the supplementary document. 3D
distribution of residual stresses is calculated based on the transient
temperature field [23]. During the deposition, the components are
clamped at four corners to resist movement which is simulated by fixing
the nodes at the four corners on the top surface of the deposit as shown
in Fig. 2. When the components cool down to the room temperature, the
clamps are released by deactivating the restriction of the nodes at the
four corners. A commercial software, Abaqus, is used for these calcu-
lations [24].

2.2. Generation of datasets

Residual stresses have three primary components along x, y and z
axes. Besides, all three components are spatially non-uniform.
Therefore, to figure out which component of residual stresses and at
what location should be considered to generate the database for ML, all
three components are compared. Fig. 3 compares the three components
of residual stress distributions of an IN 718 part. For all three compo-
nents, very high tensile stress is observed near the substrate-deposit
interface. In Fig. 3 (d), all three components are plotted along line 1
(see Fig. 2) which is near the substrate-deposit interface. The stress
component along y-direction (scanning direction) which is also called
the longitudinal stress is the highest among the three components. This
is primarily because the deposit mainly shrinks along the scanning di-
rection during cooling [25,26]. From Fig. 3 (d), it can also be found that
the longitudinal stress at the substrate-deposit interface is almost con-
stant. Therefore, longitudinal stresses (y-direction) at the center of the
substrate-deposit interface (Point ‘A’ in Fig. 2) are used to generate the
database for ML. This value of residual stress is also responsible for
delamination in WAAM [4,23].

The residual stresses in WAAM are influenced by process parameters
such as arc power, scanning speed, substrate preheat temperature and
substrate thickness as well as alloy properties [1]. Therefore, these four
aforementioned process parameters are varied for three commonly used
alloys, IN 718, SS 316 and 800H to generate the database for ML. For
each of the four process parameters, three different levels are selected
within the commonly used range in WAAM. Therefore, there are 34 i.e.
81 cases for each of the three alloys which generate 243 data points as
input for machine learning. The ranges of the process parameters and
alloy properties are provided in Table 1. Causative variables calculated
using the thermomechanical model corresponding to the 243 cases are
also used as inputs to machine learning. The ranges of the causative
variables are also provided in Table 1. The output variable of the ma-
chine learning is longitudinal residual stress at the mid-length of the
deposit near the substrate-deposit interface. For both the raw process
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variables and causative variables, 80 % of the total of 243 data points
(i.e. 194 data points) are randomly selected for training and the re-
maining 20 % (i.e. 49 data points) are used for testing. The random
selection process is repeated five times and the accuracy reported in this
work is the average accuracy of these five trials.

2.3. Machine learning algorithms

Two machine learning algorithms, artificial neural networks (ANN)
and random forests (RF) are used in this work. For the ANN algorithm,
the number of hidden layers, nodes in each hidden layer and the acti-
vation function are the critical factors [27]. The randomized search
method [28] is used to find the optimum combination of these factors

that provides the best accuracy. In this work, two hidden layers with 32
nodes in each layer and the ReLU activation function [29] are found to
be the optimum combination. RF algorithm creates multiple decision
trees as subsets and combines the outputs of them, which can help to
reduce the overfitting of the dataset [30]. Also, RF is good for providing
a feature-based ranking of variables [31]. In this work, the ranking of
variables is performed by calculating the feature importance of vari-
ables which is defined as the total decrease in node impurity averaged
over all trees of the random forest [32]. Therefore, feature importance
is an indicator that can evaluate the relative importance of the input
variables on the desired outputs. The larger is the feature importance,
the more important is the variable to the output. An open-source Py-
thon package “Sci-kit learn” was used in this work to implement both

Fig. 1. Schematic representation of the methodology used in this research. The symbol β represents the coefficient of thermal expansion and E is the Young’s
Modulus.
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ANN and RF [33]. The software package, instruction manuals, libraries
and sample cases for “Sci-kit learn” are freely available on the website
https://scikit-learn.org/stable/.

3. Results and discussions

3.1. Validation of the thermomechanical model

Since the reliability of the results from machine learning depends on
the accuracy of the residual stresses calculated using the thermo-
mechanical model, the model outputs are rigorously tested using in-
dependent experimental data. Fig. 4 shows fair agreements between the
calculated residual stresses using the thermomechanical model and the
corresponding experimentally measured [34] stresses for a single track
WAAM deposit of carbon steel (S235JR). The reasons for the slight
mismatch between the computed residual stresses and the measured
stress values may be due to the measurement error in the hole drilling
method and the assumptions made in the thermomechanical model.
The agreement gives us confidence that the residual stresses calculated
using the thermomechanical model can be used for machine learning.

Fig. 2. Schematic representation of the solution domain of the thermo-
mechanical model. Line 1 represents the substrate-deposit interface at the mid-
width of the deposit. The point ‘A’ is at the mid-length, mid-width of the de-
posit. Deposit and substrate dimensions are indicated in the figure. Substrate
thickness is a variable input as indicated in Table 1. Scanning direction is along
the positive Y-axis.

Fig. 3. Residual stresses of the component
shown in Fig. 2 along (a) x-direction, σxx, (b) y-
direction, σyy, and (c) z-direction, σzz, for IN
718 when the deposit cools down to room
temperature and the clamps are released. (d)
Comparison of the three components of re-
sidual stresses along line 1. The simulation was
done for 1450 W arc power, 4.5 mm/s scan-
ning speed, 293 K substrate preheat tempera-
ture and 5 mm substrate thickness.

Table 1
Ranges of raw and causative variables.

Raw variables Causative variables

Variable name Range Variable name Range

Power, W 1200, 1450, 1700 Pool volume, mm3 2.34∼301.79
Scanning speed, mm/s 3, 4.5, 6 Substrate rigidity, ×105 N mm2 2.98∼85.64
Substrate preheat temperature, K 293, 450, 600 Difference between solidus and preheat temperatures, K 933∼1365
Substrate thickness, mm 5, 10, 15 Heat input, J/mm 200∼566.67
Yield stress at room temperature, MPa 577∼937 Stress generated per unit temperature change, MPa /K 2.66∼4.19
Expansion coefficient, ×10−5 K-1 1.31∼2.19
Thermal diffusivity, mm2/s 2.50∼3.72
Young’s modulus, MPa 191∼203
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3.2. Hierarchy of raw process variables

As described in Section 2.2, a database for ML is generated by
varying four WAAM variables, arc power, scanning speed, substrate
thickness and preheat temperature, because these four parameters
significantly affect the residual stresses. For example, Figs. 5 (a), (b), (c)
and (d) show that the longitudinal residual stresses during WAAM of an
IN 718 component vary significantly with arc power, scanning speed,
substrate thickness and preheat temperature, respectively. Both in-
creases in arc power and decreases in scanning speed result in a larger
molten pool that shrinks more during solidification [1]. The shrinkage
generates high tensile stress near the substrate-deposit interface. The
thicker substrate has more rigidity that can restrict the deformation of
the component and accumulate high residual stresses as shown in Fig. 5
(c). Residual stresses usually develop during cooling until the entire
component cools down to a constant temperature [4]. With higher
preheat temperature, the difference between the solidus temperature of
alloy and the preheat temperature is smaller and, the residual stresses
are also smaller. Thus, residual stresses decrease with an increase in
preheat temperature as shown in Fig. 5 (d).

The aforementioned variations in residual stresses for different

process conditions and alloys generate a large dataset that is used to
train and test ANN and RF as described in Section 2. In practice, two
metrics are used to evaluate the performance of ANN and RF models,
mean absolute error (MAE) [19] and correlation coefficient (R2) score
[35]. MAE represents the mean absolute difference between the pre-
dicted stress values by ML and the stress values calculated by the
thermomechanical model. A small MAE is desirable for a good ML
model. The R2 score quantifies the deviation of data from their mean
value and a score of 1 indicates that all predicted stress values by ML
exactly match with that calculated using the thermomechanical model.
Fig. 6 shows the comparison between predicted residual stresses by
both ANN and RF and the calculated residual stresses by the thermo-
mechanical model. The figures show that all data points for training and
testing datasets of both ML algorithms are close to the diagonal line,
indicating the predicted stress values by ML agree well with the cal-
culated stress values by the model. These validation results indicate that
both ANN and RF can be used for predicting the hierarchical influence
of variables with good accuracy. ANN performs slightly better than RF
with better performance metrics values (lower MAE and higher R2
score). This is mainly because ANN is good at solving complicated
multi-scale multi-physics mathematical models and capturing the
complex relationship between inputs and outputs [19].

Running the validated ANN to generate process maps of residual
stresses for different combinations of arc power, scanning speed, sub-
strate thickness and preheat temperature is a time-efficient way since it
precludes the necessity of time-consuming thermomechanical simula-
tions. Fig. 7 shows the process maps of longitudinal residual stresses for
different combinations of the four process parameters for three alloys.
Fig. 7 (a–c) show that high arc power and slow scanning speed increase
residual stresses for all three alloys, which is consistent with the trends
shown in Fig. 5 (a–b). Also, Fig. 7 (d–f) show that thicker substrate and
low preheat temperature are favorable conditions for accumulating
high residual stresses, which is also consistent with the trends shown in
Fig. 5 (c–d). Fig. 7 (g–i) also shows that high arc power and low preheat
temperature are the ideal conditions for high stress accumulation. In
addition, all three alloys exhibit the same trend of residual stresses for
the four process parameters. High residual stresses may cause thermo-
mechanical defects such as delamination in WAAM components
[1,2,36]. Delamination is likely to occur when the longitudinal residual
stress value is higher than the room temperature yield strength and
close to the ultimate tensile strength [1]. Therefore, it is assumed that a
component is prone to delamination if the longitudinal residual stress is
higher than the average value of yield strength and ultimate tensile
strength of the alloy at room temperature. The regions of the process
maps in Fig. 7 where delamination is likely to occur are indicated in
orange as the background color. It is evident that for the same range of
process conditions, the three alloys have different regions of suscept-
ibility to delamination because of the differences in their thermo-
physical and mechanical properties.

The process maps in Fig. 7 obtained using ANN can be used to
evaluate the relative sensitivity of the four process parameters on re-
sidual stresses. Fig. 8 shows the process maps for IN 718, as an example,
where the four variables are normalized to the same scale of 0–1 for
comparison. Normalization is done by using the min-max normalization
method [37] where a variable V is normalized to V* as, V* = (V - Vmin)
/ (Vmax - Vmin). Vmin and Vmax are the minimum and the maximum
values of the variable, respectively. By comparing the slopes of the
contours for two variables in each plot in Fig. 8, the relative sensitivity
of the variables to residual stresses is evaluated. For example, in Fig. 8
(b), when the normalized preheat temperature increases from 0.06 to
0.17, the residual stress decreases from 690 MPa to 660 MPa. However,
to achieve the same 30 MPa decrease in residual stress, the normalized
arc power needs to decrease from 0.53 to 0.3. Therefore, substrate
preheat temperature is more sensitive to residual stresses than arc
power. Similarly, by comparing the relative sensitivities of variables in
all four plots in Fig. 8, it can be found that the residual stresses are the

Fig. 4. Comparison between the experimentally measured [34] and numeri-
cally computed (a) longitudinal (along y-direction, σyy) and (b) transverse
(along x-direction, σxx) residual stress profiles along the line AB which is at the
mid-length of a single track carbon steel deposit. The line AB is on the top
surface of the substrate. The processing conditions for these simulations are
available in the corresponding literature [34]. Error bars for the experimental
data are not reported in the original paper [34].
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Fig. 5. Distribution of residual stress along y-
direction (scanning direction) i.e. longitudinal
residual stress along line 1 (indicated in Fig. 2)
for IN 718 for different (a) arc power, (b)
scanning speed, (c) substrate thickness and (d)
substrate preheat temperature. When one
variable is varied, other variables are kept
constant at the middle values of their range.
For example, for figure (a), scanning speed of
4.5 mm/s, substrate thickness of 10 mm and
substrate preheat temperature of 450 K are
used.

Fig. 6. Comparison of output stress values: (a)
training dataset and (b) testing dataset calcu-
lated by thermomechanical model with corre-
sponding stress values predicted by neural
network model with raw variables in WAAM,
(c) training dataset and (d) testing dataset
calculated by thermomechanical model with
corresponding stress values predicted by
random forest model with raw variables in
WAAM. The diagonal lines in each plot re-
present calculated stress values match exactly
with the predicted values by ML. The training
data and testing data comprise 194 and 49
datasets, respectively. MAE in the plot re-
presents the mean absolute error of predicted
stress values by ML and the stresses values
calculated by thermomechanical model. R2
score is a statistical measure of how close the
data are to the diagonal line. R2 score is always
between 0 and 1. In general, the closer the R2
score is to 1, the better the model fits the data.
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most sensitive to the substrate preheat temperature, followed by the arc
power and substrate thickness. Although both arc power and scanning
speed equally contribute to the heat input to the system, the scanning
speed has a lower influence on residual stresses than arc power. This is
primarily because the effect of low heat input on residual stresses at a
fast scanning speed is masked by the low exposure time due to rapid
scanning. Therefore, the effect of heat input on residual stresses is
largely controlled by the variations in arc power which make arc power
more important than scanning speed.

The hierarchical importance of the process variables that are

obtained by analyzing their impact on residual stresses from the process
maps in Fig. 8, can also be achieved by using RF. In RF, variables are
ranked based on feature importance that evaluates the importance of
input variables in controlling the output [32]. Fig. 9 shows that the
ranking of the four process parameters identified by RF is the same as
what is obtained from the ANN in Fig. 8. In addition, four alloy prop-
erties e.g. yield stress, Young’s modulus, coefficient of thermal expan-
sion/contraction and thermal diffusivity are also found to be important
in controlling residual stresses in WAAM.

Fig. 7. Process maps showing longitudinal residual stress (MPa) contours computed using the ANN model for WAAM of (a) IN 718, (b) SS 316 and (c) 800H for
different combinations of arc power and scanning speed, for (d) IN 718, (e) SS 316 and (f) 800H for different combination of substrate thickness and substrate preheat
temperature, for (g) IN 718, (h) SS 316 and (i) 800H for different combinations of arc power and substrate preheat temperature, for (j) IN 718, (k) SS 316 and (l)
800H for different combinations of scanning speed and substrate preheat temperature. For a particular process map, when two variables are varied, other parameters
are kept constant at the middle values of their range. The processing conditions that may result in delamination are indicated by orange color in each process maps.
The delamination criteria used in this work for IN 718, SS 316 and 800H is 604.5 MPa, 430.5 MPa, 561.5 MPa, respectively.
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3.3. Hierarchy of thermomechanical variables

The hierarchical importance shown in Figs. 7–9 is for raw process
parameters in WAAM. However, the evolution of residual stresses in
WAAM is a complex thermomechanical phenomenon that involves

multiple simultaneously occurring physical processes [1]. Therefore,
complex variables that represent both thermal and mechanical beha-
viors of the system during WAAM can be better representatives of the
evolution of residual stresses compared to the raw process variables. In
WAAM, residual stresses develop depending on the transient variation
of temperature field [4]. Fig. 10 (a) shows the temperature and corre-
sponding stress variations with time at point A (in Fig. 2) for an IN 718
deposit. As the arc heat source approaches point A, the temperature at
that location increases. The expansion of the material at that location
due to a rise in temperature is restricted by the surrounding cold ma-
terial which results in compressive stress at point A. When the heat
source moves away from the location, the temperature at point A de-
creases. The stresses primarily develop during the cooling from the
solidus to preheat temperature (Fig. 10 (a)) as the complete build is
expected to cool down uniformly from the preheat to room temperature
without evolution of any significant additional stresses. Therefore, the
difference between solidus and preheat temperature is an important
factor controlling the residual stresses. Fig. 10 (b) shows that the
longitudinal residual stress at point A (in Fig. 2) for three alloys in-
creases with the difference between solidus and preheat temperature. In
addition, it should be noted that for the same temperature difference,
the residual stresses vary significantly for different alloys. Mechanical
properties of alloys such as co-efficient of thermal expansion / con-
traction and Young’s modulus and therefore their product which is
known as the stress developed per unit temperature change is also an
important factor. Fig. 10 (c) shows that the three alloys accumulate
different stresses values due to the differences in their mechanical
properties.

Transient temperature variation in Fig. 10 (a) which is responsible
for the evolution of residual stresses, is primarily governed by the heat
input per unit length of the deposit (arc power/scanning speed) [38].
High heat input results in both large molten pool and high peak tem-
perature, both of which are favorable for the accumulation of more
residual stresses as shown in Fig. 10 (d). In addition to the thermal

Fig. 8. Process maps showing longitudinal re-
sidual stress (MPa) contours computed using
the ANN model for WAAM of IN 718 for dif-
ferent combinations of (a) arc power and
scanning speed, (b) arc power and substrate
preheat temperature, (c) substrate thickness
and substrate preheat temperature and (d)
scanning speed and substrate preheat tem-
perature. For a particular process map, when
two variables are varied, other parameters are
kept constant at the middle values of their
range.

Fig. 9. Feature importance of the four WAAM parameters and alloy properties
calculated by the random forest model. Tpreheat is substrate preheat temperature,
P is arc power, d is substrate thickness and v is scanning speed. σ, E, β and α
refer to yield stress at room temperature, Young’s modulus, expansion coeffi-
cient and thermal diffusivity at room temperature, respectively. The corre-
sponding feature importance values are indicated below the variables in the
figure. The feature importance of the variables is calculated every time for the
five-times randomly selected 194 datasets from 243 datasets. The final feature
importance values of variables are averaged by the results from the five times,
and the standard deviation is shown as an error bar. Process parameters win-
dows for which the feature importance of different variables are calculated in
this figure are given in Table 1.
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effect, the evolution of residual stresses in WAAM also depends on the
mechanical behavior of the system such as rigidity of the substrate. The
rigidity of the substrate is defined by the product of Young’s modulus to
the moment of inertia [1]. The rigid substrate has more capability to
restrict the shrinkage during the solidification and cooling that results
in high residual stresses as shown in Fig. 10 (e). Although most of the
stresses develop during cooling from solidus to preheat temperature as
shown in Fig. 10 (a), localized solidification shrinkage of the molten
pool also partially contributes to the development of residual stresses.
Therefore, the volume of the molten pool that can quantitatively in-
dicate the solidification shrinkage is considered as a contributing factor
to the residual stresses. Fig. 10 (f) shows that a large molten pool
shrinks more during solidification and results in high residual stresses.

From the aforementioned discussions, it is evident that the five
thermomechanical variables, the difference between solidus and pre-
heat temperatures, the stress generated per unit temperature change,
heat input, substrate rigidity, and pool volume are important for re-
sidual stresses in WAAM. These variables are calculated for different
process conditions and alloys to generate a large dataset that is used to
train and test ANN and RF. Two metrices, mean absolute error (MAE)
[19] and correlation coefficient (R2) score [35] are used to evaluate the
performance of ANN and RF models, same as Fig. 6. Fig. 11 shows the
comparison between predicted residual stresses by both ANN and RF

and the calculated residual stresses by the thermomechanical model.
The figures show that all data points for training and testing datasets of
both ML algorithms are close to the diagonal line, indicating the pre-
dicted stress values by ML agree well with the calculated stress values
by the model. This agreement also verifies the effectiveness of the se-
lection of the five thermomechanical variables, based on which the
residual stresses can be predicted accurately.

Unlike raw process parameters, for which both ANN and RF are
used for predicting hierarchical influence, only RF is used to rank the
five complex thermomechanical variables. Since the five complex
thermomechanical variables are inherently connected, it is not possible
to vary two variables independently while other variables are kept
constant. For example, an increase in arc power results in higher heat
input per unit length of the deposit as well as larger pool volume both of
which are causative variables responsible for residual stress accumu-
lation. Therefore, the ranking of variables by analyzing the sensitivity
of residual stresses to these variables based on process maps generated
by ANN is not applicable to evaluate the hierarchical influence of five
thermomechanical variables.

Fig. 12 shows that the difference between solidus and preheat
temperature is the most influential factor for residual stresses. This is
primarily because most of the stresses develop during the cooling from
solidus to preheat temperature as explained in Fig. 10 (a). Stress

Fig. 10. (a) Temperature and longitudinal
stress variations with time at point A (in Fig. 2)
for an IN 718 deposit. All processing para-
meters are selected as the mid values of their
ranges in Table 1. Effects of (b) difference be-
tween solidus and preheat temperatures, (c)
stress generated per unit temperature change,
(d) heat input, (e) substrate rigidity and (f)
pool volume on longitudinal stresses at point A
(in Fig. 2) for three alloys. Pool volumes are
calculated at the mid length of the deposit.
Stresses are calculated with substrate preheat
temperature of 293 K, 450 K and 600 K in-
dividually for each material in (b). Stresses are
calculated with arc power of 1200 W, 1450 W
and 1700 W individually for each material in
(d) and (f). Stresses are calculated with sub-
strate thickness of 5 mm, 10 mm and 15 mm
individually for each material in (e).
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generated per unit temperature change is the second most important
variable primarily because the residual stresses can vary significantly
for different alloys for the same processing conditions. The evolution of

residual stresses depends more on the thermomechanical behavior of
the entire component compared to the localized solidification shrinkage
of the molten pool. Therefore, the pool volume is less influential on
residual stresses compared to the difference between solidus and pre-
heat temperature as shown in Fig. 12. Residual stresses depend on the
net heat content in the system, which contains both the heat input from
the arc source as well as the heat from the preheating. However, the
variable, heat input, represents the only heat available from the arc
source. In other words, for the same heat input, residual stresses can
vary largely for different preheat temperature. That makes the residual
stress least sensitive to heat input.

The identification of the five complex thermomechanical variables
and their hierarchical influence on residual stresses will substantially
advance the scientific understanding of the role of important variables
in WAAM. In addition, the hierarchical influence of the raw process
parameters will guide engineers to know which variables to adjust to
fabricate structurally sound and defect-free components.

4. Summary and conclusions

We propose a unique combination of machine learning and a well-
tested thermomechanical model to identify the most important vari-
ables and their hierarchical influence on residual stresses and delami-
nation. Two hundred and forty-three data sets for three commonly used
alloys, IN 718, SS 316 and 800H are generated using a well-tested
thermomechanical model and are used in random forest and neural
network-based machine learning. Below are the specific findings:

(1) Both random forest and neural network algorithms have been found to
predict residual stresses and delamination in WAAM with more than 97

Fig. 11. Comparison of output stress values: (a)
training dataset and (b) testing dataset calcu-
lated by thermomechanical model with corre-
sponding stress values predicted by neural
network model with five complex thermo-
mechanical variables in WAAM, (c) training
dataset and (d) testing dataset calculated by
thermomechanical model with corresponding
stress values predicted by random forest model
with five complex thermomechanical variables
in WAAM. The diagonal lines in each plot re-
present calculated stress values match exactly
with the predicted values by ML. The training
data and testing data comprise 194 and 49
datasets, respectively. MAE in the plot re-
presents the mean absolute error of predicted
stress values by ML and the stresses values
calculated by thermomechanical model. R2
score is a statistical measure of how close the
data are to the diagonal line. R2 score is always
between 0 and 1. In general, the closer the R2
score is to 1, the better the model fits the data.

Fig. 12. Feature importance of the causative parameters calculated by the
random forest model. The corresponding feature importance values are in-
dicated below the variables. The feature importance of the variables is calcu-
lated every time for the five-times randomly selected 194 datasets from 243
datasets. The final feature importance values of variables are averaged by the
results from the five times, and the standard deviation is shown as an error bar.
The symbol β represents the coefficient of thermal expansion and E is the
Young’s Modulus. Process parameters windows for which the feature im-
portance of different variables are calculated in this figure are given in Table 1.
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% accuracy. Besides, both algorithms provide the same hierarchical
influence of WAAM process variables on stresses where preheat tem-
perature is found to be the most important followed by arc power,
substrate thickness and scanning speed in controlling stresses.

(2) Using both neural network and random forest, we identified five
complex thermomechanical variables that represent the complex
mechanisms of evolution of residual stresses better than the in-
dividual WAAM process variables. They include three thermal
variables, the difference between solidus and preheat temperature,
liquid pool volume, heat input, and mechanical variables, substrate
rigidity, and the product of elastic modulus and coefficient of
thermal expansion.

(3) Among the five thermomechanical variables, the difference be-
tween the solidus and preheat temperature was found to be the
most important parameter. This is mainly because residual stresses
originate during cooling from the solidus to preheat temperature.
As the temperature further decreases from the preheat to room
temperature, the whole component cools down uniformly and no
significant additional stresses develop.

(4) The product of elastic modulus and the coefficient of thermal ex-
pansion that represents the stress developed per unit change in
temperature and volume of the molten pool are the second and
third most influential variables that affect residual stresses. For the
same range of cooling, residual stresses vary significantly de-
pending on the material property, which makes residual stresses
highly sensitive to stress developed per unit change in temperature.
Residual stresses depend on the thermomechanical behavior of the

entire component and not only on the localized shrinkage of the
molten pool volume. The pool volume was not as influential as the
other variables on residual stresses.

(5) Although the thermophysical properties of three alloys, IN 718, SS
316 and 800H, vary within the same range of process parameters,
the variation of residual stresses shows a similar trend. However,
magnitudes of stresses are different for three alloys due to the dif-
ferences in their thermophysical and mechanical properties. These
differences in stress values make their susceptibility to delamina-
tion different under the same processing conditions.
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Appendix A. Does the hierarchy depend on the absolute values of residual stresses?

In wire-arc additive manufacturing, generally, components are made by depositing multiple layers [4]. Residual stress values in the component
vary with the progress of the multi-layer deposition process [4]. Fig. A1 shows that the longitudinal residual stresses change with the deposition of
different layers along the build direction [39]. This is primarily due to the repeated thermal cycles experienced by the component during layer-by-
layer deposition [39]. Therefore, the residual stress values of a single layer may vary from that in a multi-layer deposit. It is important to evaluate if
the values of the first layer can be reliably used to determine the hierarchy of variables that affect the residual stresses. We do so using various
approaches.

First, it is well-established in the machine learning literature that the variables need to be non-dimentionalized [40–42] on a scale generally
between 0 and 1 for obtaining their hierarchy. This is because different variables have diverse order of magnitudes of values. In our case, all variables
including the residual stress are normalized on a scale between 0 and 1. Therefore, the hierarchy depends on the trends and not absolute values of the
residual stress which vary with the deposition of different layers.

Second, it can be shown mathematically that the hierarchy of the input variables does not depend on the magnitude of the output variable
(residual stresses). Consider the variation of the output variable residual stress (σ) as functions of two independent variables X and Y. For a particular
value of σ, if X has a higher influence on residual stress than Y, then the following expression is true:

>
X Y

/ 1
(A1)

If the value of residual stress in a different layer is higher by Δσ, such that:

= =
X

( ) 0 and ( )
Y

0 (A2)

Fig. A1. (a) A schematic diagram of the solu-
tion domain for the calculations showing the
line at the substrate deposit interface along
which the stresses are plotted [39]. Calcula-
tions are done for half of the build. This re-
duces the time necessary for the calculations
and the computer memory requirements for the
analysis. (b) Residual stresses [39] after de-
positing various layers along the line shown in
figure (a).
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The same hierarchy, i.e., X is more influential than Y would be valid as can be observed from the following expression.

+ + >
X Y

( ) / ( ) 1
(A3)

Since Eq. (A3) is the same as Eq. (A1), the hierarchy of variables X and Y are unaffected by the absolute values but depends on the trends in
variations. It is well-known in the additive manufacturing literature [12] that the trends in the variations of residual stresses with variables such as
power, speed, substrate thickness, preheat temperature do not change with the number of layers deposited. Therefore, the hierarchy of variables
computed using the data of a single layer deposit is also valid for multi-layer deposits.

Third, we have repeated the calculations presented in this paper with two layers of deposition and evaluated the hierarchy using the same
procedure. In other words, we have calculated the residual stresses at the substrate deposit interface after depositing the second layer for the IN 718
deposit using 1450 W power, 4.5 mm/s scanning speed, 10 mm substrate thickness, and 450 K preheat temperature. The maximum stress value is
about 0.75 times the maximum value for the single layer deposit. Following the trend, we have made a new dataset with 243 data points and
calculated the hierarchy of raw variables and alloy properties which is shown in Fig. A2. The hierarchy of variables shown in the figure is the same as
what is provided in Fig. 9 for the single layer deposit. The hierarchy remained the same as that for a single layer deposit. In addition, the calculation
of hierarchy using the first layer deposition is computationally more efficient since the residual stress calculations are computationally intensive.

Appendix B. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.addma.2020.101355.
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