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Abstract 

In a laser based additive manufacturing process, the alloy powders undergo a rapid heating, 

melting, solidification and cooling process. The morphology and the scale of the solidification 

structure depend on the temperature gradient and the growth rate during the additive manufacturing 

process. A comprehensive three dimensional transient heat transfer and fluid flow model has been 

used to calculate the temperature distribution, thermal cycles and local solidification parameters 

during laser based additive manufacturing process for nickel based super alloys. The growth 

direction of columnar dendrites and the solidification texture are estimated based on the computed 

temperature field. The effects of the process parameters on the growth directions, morphologies 

and scale of the solidification structures are discussed. 

Introduction 

Additive manufacturing (AM) of alloys offers many advantages over the conventional techniques 

for producing ‘near-net-shape’ parts. AM allows layer-by-layer fabrication of parts with complex 

geometries that are used for applications in medical, aerospace, automotive and other industries 

[1-3]. Since texture affects mechanical and chemical properties of the fabricated components, its 

control is crucial for achieving desirable properties of AM parts. As the scanning strategy of the 

laser beam affects solidification pattern, components with same geometry can have different 

solidification texture [4-6]. Parimi et al. [4] reported an inclination of 50º - 60º of grain growth 

with scanning direction. However, for alternate hatching strategy, the grains of two successive 

layers are oriented almost perpendicular to each other. The solidification patterns depend on the 

local temperature field near the growth interface and the grain orientation of the substrate [7].  Liu 

et al. [9] have shown that columnar grains grow epitaxially on single crystal substrates and the 

solidification growth rates at solid-liquid interfaces is significantly affected by the AM process 

parameters.  

Here we show that three-dimensional, transient heat transfer and fluid flow calculations can 

provide an understanding of grain growth in nickel based superalloys during AM process. Based 

on the calculated ratio of temperature gradient (G) to the growth rate (R), grain morphology is 

estimated. Growth of dendrites and its dependence on process conditions are discussed based on 

the computed temperature distribution. 
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Heat transfer and fluid flow model 

 

The three-dimensional, transient, heat transfer and fluid flow model used here solves the equations 

of conservation of mass, energy and momentum. [1] These equations are available in standard text 

books [9] and published literature [7, 10] and are not repeated here. The model computes 

temperature and velocity fields at various locations from AM process variables, such as the laser 

power, power density distribution, scanning speed, chemical composition, particle size, feed rate 

and thermo-physical properties of the alloy powder. [1, 3] In laser assisted AM, a fraction of the 

laser beam energy is transferred from the laser beam to the alloy powders and substrate. The laser 

energy is considered in the energy conservation equation as a volumetric heat source, vS  as,  
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where D, a  is, P are the power distribution factor, the laser absorption coefficient and the laser 

beam power, respectively. The symbol r refers to the radius of the laser beam, dh  is the thickness 

of the material layer being deposited on the substrate, x and y are the co-ordinates from the axis of 

the laser beam on the surface. [11-13] 

 

 
Figure 1. Comparison between the numerically calculated and the corresponding actual build 

shape [5]. 

 

The boundary conditions for the thermal analysis include heat exchange by convection and 

radiation with the surroundings. The boundary conditions for the velocities at the free surface are 

based on Marangoni convection. [1, 7, 10] The transient heat transfer and fluid flow calculations 

are performed for a solution domain representing the substrate, deposited layers, and the 

surrounding gas. The calculations are continued until the simulation of all the layers is completed 

and the specimen cools. 

Figure 1 shows a comparison between the numerically calculated and the corresponding actual 

build shape [5]. A fair agreement between the calculated build shape and size, and the 

corresponding measured build profile in figure 1 indicates that the modeling results can be used to 

estimate the grain growth with confidence. Based on the computed temperature distribution, G/R 
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ratios are calculated at various locations of solidification front. Figure 2a shows the G/R ratio for 

the laser based deposition [4, 6] of IN 718 on the solidification map [14]. It reveals that columnar 

dendrites or a mixture of columnar and equiaxed dendrites are observed depending on the 

solidification velocity and the temperature gradient. However, direction of the grain growth is 

along the maximum heat flow direction. For AM, maximum heat flow direction is perpendicular 

to the trailing edge of the molten pool towards the substrate [15]. Hence, columnar dendrites grow 

on the top of the substrate perpendicular to the trailing edge of the pool as shown in Figure 2 (b). 

Because of lower G/R ratio near the top surface of the molten pool, equiaxed grains can be 

observed as shown in Figure 2 (b). 

 

 
 

Figure 2. (a) Solidification map of IN718. The symbol square indicates columnar dendrite 

region, and circle indicates the columnar and equiaxed dendrite region. (b) Illustration for 

columnar and equiaxed dendrites in the longitudinal mid-section of a depositing layer 

 

Figures 3 (a) and (b) show the simulated and experimentally observed columnar and equiaxed 

grains[4] in the longitudinal mid-section of the deposit. The solidification condition is in the mixed 

region in Figure 2(a) as indicated by the circle. For the first layer, columnar grains start to grow 

epitaxially from the substrate and their growth is blocked by the formation of equiaxed grains in 

the upper part of the layer. The columnar grains in the second layer also grow epitaxially from the 

equiaxed grains on the top of the first layer. Competitive growth of grains with different 

orientations occurs and those closely aligned with the maximum heat flow direction at the 

solid/liquid interface obtain preferential growth. However, equiaxed grains also form in the upper 

part of the second layer. Similar grain growth processes take place during the deposition of 

subsequent layers. 
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Figure 3. (a) Calculated grain orientations, (b) EBSD for unidirectional scanning of IN718 [4] 

 

Figures 4 (a) and (b) show the simulated and experimentally observed columnar grains[6] in the 

longitudinal mid-section of the deposit. The solidification condition is in the columnar region in 

Figure 2(a) as indicated by the square. For the first layer, columnar grains start to grow epitaxially 

from the substrate and no equiaxed grains formed in the deposit. The columnar grains in the second 

layer then grow epitaxially from the columnar grains in the first layer. Similar grain growth 

processes take place during the deposition of the subsequent layers. Therefore, elongated columnar 

grains through several layers are generated by the continuous epitaxial growth. 

 

 
 

Figure 4. (a) Calculated grain orientations (b) EBSD for unidirectional scanning of IN718 [6] 

 

Conclusions 

 

The solidification textures of a nickel based alloy during AM could be estimated using heat transfer 

and liquid metal flow modeling. For laser assisted AM of IN718 by unidirectional scanning, the 

solidification texture can be a mixture of columnar and equiaxed grains with significantly amount 

of equiaxed grains in the upper part of the layers. However, the solidification texture can also 

consist of elongated columnar grains through several layers from continuous epitaxial growth 

depending on solidification rate and temperature gradient. The numerical modeling results help to 

understand the mechanism of formation of the solidification texture and provide a basis for 

customizing solidification textures during additive manufacturing of IN718. 
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