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Tool and workpiece temperatures, torque, traverse force and stresses on the tools are affected by

friction stir welding (FSW) variables such as plate thickness, welding speed, tool rotational speed,

shoulder and pin diameters, pin length and tool material. Because of the large number of these

welding variables, their effects cannot be realistically mapped by experiments. Here, we develop,

test and make available a set of five neural networks to calculate the peak temperature, torque,

traverse force and bending and equivalent stresses on the tool pin for the FSW of an aluminium

alloy. The neural networks are trained and tested with the results from a well tested,

comprehensive, three-dimensional heat and material flow model. The predictions of peak

temperature and torque are also compared with appropriate experimental data for various values

of shoulder radius and tool revolutions per minute. The models can be used even beyond the

range of training with predictable levels of uncertainty.
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Introduction
Friction stir welding (FSW) has gained widespread
commercial applications in the recent past, particularly
for the welding of soft alloys.1,2 Process monitoring and
control often involve monitoring several variables such as
workpiece and tool temperatures, torque and traverse
force. These monitoring variables and the quality of the
welds are affected by welding variables such as tool
geometry, tool material and rotational speed, welding
speed, workpiece thickness and thermophysical proper-
ties. In view of the large number of variables and the
complexity of the welding process, no generally usable
relationship between the monitoring variables and the
welding variables has emerged. Currently available
methods to quantitatively understand the role of welding
variables include the use of comprehensive models of
heat transfer and materials flow,3–11 correlations based
on dimensional analysis12,13 and simplified analytical
correlations.13 Comprehensive models are rigorous but
time consuming and therefore unsuitable for real time
applications or where large volumes of results are needed.
Most correlations based on dimensional analysis are
suitable for interrogating trends of variation of variables

but not their exact values. Simplified analytical models
are insightful but lack the generality and accuracy of the
comprehensive models.

Artificial neural networks (ANNs) are used to solve
complex welding problems,14–16 where the form of the
relationship among the variables is not explicitly known.
Familiar examples of neural network based calculations
in FSW involve estimation of grain size,17,18 joint
misalignment and seam tracking,19 prediction of worm-
hole defects20 and mechanical properties such as shear
stress,21 tensile stress,22 fatigue life,23 hardness24 and
ductility.24 A common feature of the previous works on
the ANNs of the FSW process is that the networks are
trained with experimental data. Here, we report the
development of neural networks to calculate the peak
temperature, torque, traverse force, bending stress and
maximum shear stress experienced in the tool during
FSW. The peak temperature, torque and traverse force
provide useful process insight and also serve as process
control parameters, and the stresses on the tool provide
an understanding of the thermomechanical conditions
experienced by the tools.

The numbers of input and output variables of an ANN
determine the volume of data required to train the neural
network. For FSW, since a large number of variables
affect the peak temperature, torque and traverse force, it
is a difficult task to obtain these results experimentally.
Furthermore, the stresses on the tool cannot be easily
measured experimentally. A recourse is to obtain the
training data from a well tested comprehensive numerical
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heat transfer and material flow model. Since the
numerical heat transfer and material flow model has
been well tested with experimental data, the results of
the model provide reproducible data that conform to the
basic phenomenological laws within the limits of the
accuracy of the calculations. Because of the recent
improvements in the computational hardware and soft-
ware, a large volume of training and testing data can be
generated in a realistic time frame.

Here, we report the development and testing of a set
of five neural networks to calculate peak temperature,
torque, traverse force and bending and equivalent
stresses on the tool pin for the FSW of aluminium alloy
7075. The training and testing data for the neural
networks are obtained from a well tested, comprehen-
sive, three-dimensional heat and materials flow model.
The procedure allows the estimation of uncertainties in
the predicted values of all variables. Furthermore, the
quality of the predictions of peak temperature and
torque is also examined by comparing with appropriate
available experimental data for various values of
shoulder radius and tool revolutions per minute.

Numerical model
A well tested, three-dimensional, heat transfer and
viscoplastic material flow model for FSW is used to
compute the temperature field, traverse force and torque
during welding.7–12 The model solves the equations of
conservation of mass, momentum and energy in steady
state, three-dimensional Cartesian coordinate system
considering incompressible single phase flow. The
numerical model has been explained in detail in several
previous publications7–12 and is not repeated here. The
bending stress and the maximum shear stress on the tool
are estimated following analytical relations from solid
mechanics and using the computed results of tempera-
ture field, torque and the distribution of force along the
tool pin length.25 A brief outline of the methodology to
estimate the bending stress and maximum shear stress
on the tool pin is presented here for completeness.

Because of the linear motion (welding speed) of the
FSW tool, the tool pin will experience normal force in the
direction opposite to the direction of welding. The force
would be higher towards the bottom of the pin as the
material away from the tool shoulder is colder and hence
stronger. In effect, the tool pin, which is fixed only with
the shoulder and free for the rest of the length, will
experience a bending stress, sB, that can be estimated as25

sB~
4 cosh

pr3

ðL
z1

zq(z)dz (1)

where r and L are the pin radius and length respectively, h
is the angle of any point on the pin profile with the
welding direction, q(z) is the typical force distribution on
the tool pin acting normal to the axis of the pin and in a
direction opposite to the welding speed and z1 is the
distance of the point from the fixed end of the pin. The
shear stress, tB, at any point on the pin profile due to
bending can be estimated as25

tB~
4

3

sin2h

pr2

ðL
z1

q(z)dz (2)

Furthermore, the rotational motion of the tool pin
through the viscous material will result in a shear stress,
tT, that can be estimated as25

tT~

Þ
A

rA| 1{dð Þt|dA

pr3=2
(3)

where the numerator depicts the sticking torque with d
the spatial fractional slip,7–12,25 rA the distance of any
infinitesimal area element dA from the tool axis and t the
temperature dependent shear strength of the workpiece
material. The resultant maximum shear stress tmax at any
point on the tool profile can finally be estimated following
Tresca’s yield criterion25

tmax~
sB

2

� �2

z tBztT sinhð Þ2z(tT cosh)2

� �1=2

(4)

Equations (1)–(4) are used to estimate the bending stress
and the maximum shear stress experienced by the tool
during the FSW process.

Artificial neural network model
A set of ANN models are developed to understand the
effect of the welding conditions and tool dimensions on
the peak temperature, torque, traverse force and stresses
on the tool pin during FSW of AA 7075. The training and
testing data sets for the ANN models are generated using
the heat transfer and viscoplastic flow model (for
temperature, torque and traverse force) and further using
equations (1) and (4) respectively for bending stress and
maximum shear stress. All the thermophysical material
properties required for numerical model calculations are
considered temperature dependent.10 The training and
testing data sets consist of 124 and 49 different combina-
tions of welding conditions and the corresponding
response variables respectively. The combinations of
welding conditions in the training data set are decided
following Taguchi’s L50 array and central composite
rotatable design (CCD) and using five levels each of the
six welding conditions in both cases.26 The combinations
of welding conditions in the testing data set are decided
based on Taguchi’s L50 array and using five levels each of
the six welding conditions. Table 1 depicts various levels
and ranges of the input welding conditions considered for
the training and testing of ANN models.

Figure 1 is a schematic diagram of the neural network
models that are developed in the present work. The
input layer consists of tool rotational speed, welding
speed, tool shoulder and pin radius, pin length and axial
force. The responses include peak temperature, total
torque, traverse force, bending stress and maximum
shear stress. Since the pin length is usually considered as
90% of the plate thickness in many FSW operations to
obtain full penetration, the plate thickness is not
considered as an additional variable. A separate neural
network model is developed for each response variable.
The hidden layer in each neural network model has a
variable number of nodes depending on the non-
linearity of the relationship between the input variables
and the selected response variable.

The input variables are connected to the output of the
model via the nodes in the hidden layer (Fig. 1). The
output of a node is computed using a hyperbolic tangent
function as
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y~tanh
Xn

i~1

wixizhi

 !
(5)

where y is the output of a node, xi is the input, wi is the
weight, hi is the bias attached to the ith input node and n
is the total number of nodes contributing to the specific
output node in the hidden or output layer. The ANN
models are trained in batch mode following the feed
forward back propagation algorithm with Bayesian
approach that allows the estimation of uncertainty in
the predictions. The weights for each ANN model are
optimised by minimising the objective function E as27–29

E~
b

n
EDz

a

m
EW (6)

where b and a are two regulariser terms related to the
noise in the data set and uncertainty in the distribution
of weights respectively, n is the number of data sets and
m is the total number of weights in a neural network
model. The terms ED and EW refer to the error in data
sets and weight distributions and are expressed as27–29

ED~
1

2

Xn

i~1

di{yið Þ2
" #

(7)

EW~
1

2

Xm

j~1

w2
j (8)

where di and yi are the desired and corresponding
estimated outputs for the ith data set respectively. The
weights are updated as30

wkz1~wk{ g
LE

Lw

� �
kz1

zQ
LE

Lw

� �
k

� �
(9)

where g and Q refer to the learning rate and momentum
transfer constant respectively, and wkz1 and wk refer to
the weights in two successive iterations kz1 and k. The
regulariser terms b and a are also updated in every
iteration as27–29

b~
m{c

2ED

(10)

a~
c

2EW

(11)

The term c is referred to the effective number of
parameters in a neural network model and is expressed
as c5m2a6trace(H)21, where H is a Hessian matrix
and computed as27–29

H~b+2EDza+2EW (12)

For a given data set, several neural network models with
the number of hidden nodes varying from 6 to 12 (twice
the number of input nodes) are trained and compared
based on the respective log predictive error that is
computed as30

LPE~
b

2

Xn

i~1

di{yið Þ2z n

2
ln

2p

b

� �
(13)

The neural network model with the least log predictive
error is selected as the best and is expected to provide a
balance between over- or underfitting and the complex-
ity of model. The uncertainty of the predictions from the
neural network model is calculated as29,31

s~
1

b
z

Lyi

Lwj

� �T

½H�{1 Lyi

Lwj

� �( )1=2

(14)

In equation (14), the first term on the right hand side refers
to the variance due to noise in the data set, and the second
term indicates the error due to sensitivity of the prediction
on the weight distribution. The following web sites host
further description of the theory for the construction of
ANN models, the computer code used, a user’s manual for
the ANN model and the complete data sets used for the

1 Architecture of proposed ANN models

Table 1 Levels of six input variables used for training and testing of ANN models for FSW of AA 7075

Input variable
Shoulder radius/
61022m

Pin radius/
61022m

Pin length/
61022m

Welding speed/
61022 m s21

Rotational speed/
rev min21

Axial pressure/
MPa

Levels for training (L50) 0?75 0?200 0?27 0?1 300 18
1?00 0?225 0?35 0?2 420 20
1?25 0?250 0?43 0?3 570 22
1?50 0?275 0?55 0?4 750 25
1?75 0?300 0?93 0?5 900 27

Levels for training (CCD) 0?75 0?25 0?27 0?1 300 18
0?99 0?28 0?41 0?23 494 22?53
1?1 0?30 0?5 0?3 600 25
1?26 0?32 0?56 0?37 706 27?47
1?5 0?35 0?7 0?5 900 32

Levels for testing (L50) 0?9 0?21 0?306 0?15 360 19
1?1 0?24 0?387 0?25 480 21
1?3 0?26 0?468 0?33 630 23
1?4 0?27 0?513 0?36 680 24
1?6 0?29 0?594 0?45 820 26
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training and testing of the ANN models. http://www.me.
iitb.ac.in/yamit/ANN; http://www.matse.psu.edu/modeling/
ANN

Results and discussions

Performance of ANN models
The range of training and testing data sets is presented in
Table 1. The FSW of 0?003–0?007 m thick AA 7075
plates with tool shoulder radius ranging from 0?0075 to
0?0175 m, pin radius from 0?002 to 0?003 m, welding
speed from 0?001 to 0?005 m s21, rotational speed from
300 to 900 RPM and axial pressure from 18 to 27 MPa is
considered. The length of the tool pin in Table 1 relates to
the plate thickness. The ranges of the computed values of
response variables corresponding to several combinations

of welding conditions are as follows. The peak temperature
varies from 560 to 760 K. The total torque and the traverse
force experienced by the tool vary from 10 to 60 Nm and
from 1?0 to 6?0 kN respectively. The bending stress and the
resultant maximum shear stress experienced by the tool pin
range from 20 to 300 and 70 to 300 MPa respectively.
Similar ranges of these response variables are observed by
both model calculations and actual experiments reported
in the literature.4–13 The complete training and testing data
sets are uploaded separately as Supplementary Material 1
http://dx.doi.org/10.1179/1362171812Y.0000000035.s1 in
the journal homepage.

Figure 2a–e shows the performance of the five ANN
models in predicting the response variables, e.g. peak
temperature, and the torque, traverse force, bending
stress and maximum shear stress experienced by the tool

2 Desired (from numerical model) vis-à-vis estimated (from neural network models) values of a peak temperature, b tor-

que, c traverse force, d bending stress sB and e maximum shear stress tMAX
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using both training and testing data sets. The numbers
of hidden nodes in the final ANN models range from 9
to 11, which indicate complex interrelations between
each response variable and the welding conditions and
tool geometry. The error bars in Fig. 2 depict the
uncertainties in the prediction of the response variables
with 95% level of confidence for various welding
conditions. Figure 2 shows a fair agreement between
the predicted and desired values of response variables
with the errors in prediction ranging from ¡2?5% for
peak temperature, ¡7?5% for torque, traverse force and
maximum shear stress and up to ¡12% for bending
stress. The errors tend to increase in the region with
sparse population of training data sets. For example,
the uncertainty in the prediction of bending stresses
increases beyond 250 MPa since the training data sets
contain very few welding conditions, resulting bending
stresses of .250 MPa.

Distribution of error bars in ANN model
predictions
Figure 3a shows the estimated values of peak tempera-
ture and its uncertainty in prediction as a function of
tool shoulder radius for welding conditions beyond
¡20% of the range of the training data sets. Similarly,
Fig. 3b shows the estimated values of traverse force and
its uncertainty in prediction as a function of pin length
for welding conditions beyond ¡20% of the range of the
training data sets. Figure 3a shows that the peak
temperature increases with the tool shoulder radius.
For larger shoulder radius, the higher surface area at the
tool/workpiece interface results in greater heat genera-
tion rate and higher peak temperature. Figure 3b shows
that the traverse force increases with longer pins used for
the welding of thicker plates. For a given welding
condition, the increase in plate thickness reduces the
peak temperature and forces the tool pin to push a larger
volume of cooler and stronger workpiece material.
Figure 3a and b shows that the optimised ANN models
are able to predict the variations of peak temperature as
a function of tool shoulder radius and traverse force as
function of pin length even for values that are well

beyond the range of training data sets in each case.
However, the uncertainty in the predictions increases
beyond the range of training data sets.

The performance of the ANN model for peak
temperature is examined for input variables other than
shoulder radius ¡20% beyond the ranges of the training
data sets. Although the ANN model has been able to
capture the trend in the variation of peak temperature
as a function of the input variables fairly well, the
uncertainty in prediction increases up to ¡4% in cases
when the input variables are considered beyond the
range of the training data set by ¡20%. In contrast, the
uncertainty in prediction in temperature lies within
¡2?5% of the predicted values when the input variables
are considered within the training range. Similar
examination of the ANN model for the traverse force
resulted in uncertainty of prediction up to ¡18% of
the predicted values for welding variables exceeding
the range of training data by ¡20%. In contrast, the
maximum uncertainty in the prediction of traverse force
remains within ¡15% of the predicted values for within
the range of the training data sets. The ANN models for
the prediction of torque, bending stress and maximum
shear stress exhibited uncertainties in predictions up to
¡12, ¡20 and ¡12% of the predicted values respec-
tively in the range ¡20% beyond the training data set.
In contrast, the uncertainties in prediction remained
within ¡8, ¡17 and ¡8% of the predicted values for
the ANN models for the torque, bending stress and
maximum shear stress respectively in the range of the
training data set values shown in Table 1.

The uncertainty in the predicted values of peak
temperature is considerably lower than that in the
computed values of the other four variables. Since
temperature affects the material properties and many
other intermediate variables, any uncertainty in tem-
perature augments to the inherent uncertainty in the
calculation of the other variables, increasing the overall
uncertainty. Since the peak temperature is a key variable
in FSW, the ability of the neural network to estimate its
value fairly accurately makes the ANN model particu-
larly useful.

a pin radius: 0?0022 m, pin length: 0?003 m, welding speed: 0?001 m s21, rotational speed: 400 rev min21, axial pressure:
20 MPa; b shoulder radius: 0?0075 m, pin radius: 0?0025 m, welding speed: 0?001 m s21, rotational speed: 300 rev min21,
axial pressure: 18 MPa

3 Prediction of a peak temperature as function of shoulder radius and b traverse force as function of pin length: other

conditions corresponding to a and b are as follows
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Validation of ANN model predictions with
experimental results
Figure 4a–d shows comparisons between the values of
peak temperature and torque computed from the ANN
models with the corresponding measured values10 for the
FSW of AA 7075. It can be noted that the measured
values of the temperatures were at a transverse distance of
0?0085 m from the butting surface (on the retreating side)
and a depth of 0?00075 m from the top surface during
FSW of 0?0035 m thick AA 7075.10 Figure 4a and b
shows that the values calculated from the optimised ANN
models agree fairly well with the corresponding experi-
mental results for various values of shoulder radius
and tool revolutions per minute. The peak temperature
increases significantly with the increase in tool shoulder
radius and gently with the increase in tool rotational
speed. A larger tool shoulder radius results in greater heat
generation rate and higher peak temperature at the
interface between the tool shoulder and the workpiece.
An increase in tool rotational speed also results in a
higher rate of heat generation and greater peak tempera-
ture. Figure 4c and d show that the torque experienced by
the tool increases with the increase in tool shoulder radius
and decrease in tool rotational speed. The increase in the
tool–workpiece contact area with the increase in tool
shoulder radius leads to greater torque requirement. The
increase in tool rotational speed increases the slip along
the tool/workpiece interface, reducing the overall torque
experienced by the tool. Figure 4c and d also indicates a

fair agreement between the measured values of torque
and the corresponding estimated values from the optimis-
ed neural network models. It is noteworthy that the
welding speed and the axial force for the experimentally
measured results are beyond the ranges of the training
data used, but they did not exceed the range beyond
¡20%. Thus, even when the peak temperature and
torque exceeded the training data set range by ¡20%, the
ANN models are able to capture their respective values
and trends fairly well.

Conclusions
Five ANN models are developed following the Bayesian
approach for the calculation of peak temperature,
traverse force, torque, bending stress and maximum
shear stress experienced by the tool during FSW of
AA 7075. The input welding variables included tool
shoulder radius, tool rotational speed, pin radius and
pin length, welding speed and axial force. The training
and testing data sets for the ANN models are obtained
from a well tested comprehensive 3D heat transfer and
material flow model for FSW. The optimised ANN
models have shown fairly good performance in predict-
ing the corresponding response variables. The uncer-
tainties in the prediction from the ANN models vary
from ¡2?5% for peak temperature to ¡7?5% for torque,
traverse force and maximum shear stress, and up to
¡12% for the bending stress within the range of the
training data. When the values are calculated exceeding

4 Comparison of experimentally measured and estimated (using optimised neural networks) values of a, b peak tempera-

ture and c, d torque experienced by tool: welding conditions and tool geometry corresponding to experimentally mea-

sured values are as follows (pin radius: 0?003 m at root to 0?00233 m at bottom, pin length: 0?003325 m, welding

speed: 0?00067 m s21 and axial pressure: 30 MPa)
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up to ¡20% of the range of the training data sets, the
maximum values of such uncertainties in prediction were
¡4% for peak temperature, ¡12% for torque and the
maximum shear stress, ¡15% for traverse force and
¡20% for the bending stress. The optimised neural
network models for temperature and torque can predict
the trends and values of the available experimental data
fairly well. The five neural networks, valid for the tool–
material combinations within the range of independent
variables indicated in Table 1, are available from web
sites indicated in the paper.
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