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ABSTRACT. A desired weld feature such
as geometry can be produced using multi-
ple sets of welding variables, i.e., different
combinations of arc current, voltage,
welding speed, and wire feed rate. At pre-
sent, there is no systematic methodology
that can determine, in a realistic time
frame, these multiple paths based on sci-
entific principles. Here we show that the
various combinations of welding variables
necessary to achieve a target gas metal arc
(GMA) fillet weld geometry can be sys-
tematically and quickly computed by a
real-number-based genetic algorithm and
a neural network that has been trained
with the results of a heat transfer and fluid
flow model. The neural network is com-
putationally efficient and, because of its
origin, its input and the output obey the
equations of conservation of mass, mo-
mentum, and energy. A genetic algorithm
is used to determine a population of solu-
tions by minimizing an objective function
that represents the difference between the
calculated and the desired values of the
penetration, throat, and leg length. The
model proposed here is different from tra-
ditional reverse models, since they cannot
provide a choice of solutions and usually
do not confirm to any phenomenological
laws. The computational methodology
provided a choice among various sets of
current, voltage, welding speed, and wire
feed rate for achieving a given fillet weld
geometry specified by a set of leg length,
penetration, and throat. The computed
results were adequately verified by com-
paring with experimental results. The re-
sults provide hope that other weld attrib-

utes can also be tailored based on scien-
tific principles in the future.

Introduction

In recent years, phenomenological
models of various fusion welding
processes such as gas tungsten arc (Refs.
1–10), gas metal arc (GMA) (Refs.
11–16), and laser beam welding (Refs.
17–19) have been developed to better un-
derstand physical processes in welding
and calculate the weld geometry (Refs.
3–10), cooling rate (Refs. 4, 11–13), and
other weld attributes such as weld metal
phase composition (Refs. 4, 8), grain
structure (Refs. 5, 6), and inclusion struc-
ture (Ref. 7). Although these powerful
models have provided significant insight
about the effect of various welding vari-
ables, their applications have been rather
limited (Refs. 20–22) for several reasons.
First, the models are comprehensive and
require a significant amount of computer
time. Second, they are designed to calcu-
late temperature and velocity fields for a
given set of welding variables, i.e., they are
unidirectional in nature. In other words,
they cannot predict the welding variables
needed to achieve a target weld geometry

(Refs. 20–22) or other weld attributes. Fi-
nally, the GMA welding system is highly
complex and involves nonlinear interac-
tion of several welding variables (Refs.
11–16, 24). As a result, a particular weld
attribute such as the geometry can be ob-
tained via multiple paths, i.e., through the
use of various sets of welding variables.
What is very much needed, and not cur-
rently available, is for the models to have
a capability to offer various choices of
welding variable combinations, each capa-
ble of producing a target weld attribute.
Traditional reverse models cannot pro-
duce multiple solutions and, in most in-
stances, cannot confirm to any phenome-
nological laws. 

Three main requirements need to be
satisfied by a model for systematic tailor-
ing of a weld attribute such as weld geom-
etry based on scientific principles. First,
the model should be capable of capturing
all the major complex physical processes
occurring during GMA welding. Second,
the model must have a bidirectional capa-
bility. In other words, in addition to the ca-
pability of the traditional unidirectional,
forward models to compute the weld
shape and size from a given set of welding
variables, it should also have the inverse
modeling ability, i.e., it should be able to
systematically predict welding variables
needed to produce a target weld geome-
try. Finally, the model must be able to de-
termine various welding variable sets
needed to attain a target weld geometry
within a reasonable time. 

Since multiple paths can lead to a tar-
get weld geometry, the classical gradient-
based search and optimization methods
(Refs. 20–22) that produce a single opti-
mum solution cannot be used. These
methods use a point-by-point approach,
where one relatively imperfect solution in

Tailoring Fillet Weld Geometry Using a
Genetic Algorithm and a Neural 

Network Trained with Convective 
Heat Flow Calculations

The combinations of welding variables needed to achieve a target gas metal 
arc fillet weld geometry can be systematically and quickly computed by a 

real-number-based genetic algorithm and a neural network

BY A. KUMAR AND T. DEBROY

A. KUMAR and T. DEBROY are with Depart-
ment of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pa.

KEYWORDS

Neural Networks
Gas Metal Arc Welding
Fillet Welds
Genetic Algorithm
Heat Transfer Models
Fluid Flow Models

LAYOUT:Layout 1  12/13/06  3:56 PM  Page 26



WELDING RESEARCH

-s27WELDING JOURNAL

each iteration is modified to a different,
more appropriate solution (Refs. 25, 26).
Therefore, a combination of one of these
classical optimization methods with the
phenomenological model can provide
only a single local optimum solution in sit-
uations where multiple solutions exist. In
contrast, genetic algorithms (GA) mimic
nature’s evolutionary principles to derive
its search toward a population of optimal
solutions (Refs. 25–28). In the context of
welding, a GA can systematically search
for multiple combinations of welding vari-
able sets that comply with the phenome-
nological laws of welding physics and im-
prove with iterations (Refs. 20–22). 

Recently, Kumar and DebRoy (Ref.
20) and Mishra and DebRoy (Refs. 21, 22)
developed bidirectional phenomenologi-
cal models of GMA fillet welding and
GTA butt joint welding, respectively, by
coupling a genetic algorithm-based opti-
mization method with three-dimensional
heat transfer and fluid flow model. They
showed that the above approach can pre-
dict multiple combinations of welding
variables to achieve a target geometry.
However, these models (Refs. 20–22) are
unsuitable for practical applications, since
they require several days of computer cal-
culations. Kumar and DebRoy (Ref. 20)
used a parallel computing facility, i.e., run-
ning their model on multiple processors si-
multaneously to reduce computational
time. Since it is very hard to maintain such
a sophisticated computing facility in a
manufacturing industry, their model can

only be used for research purposes. Unless
a model can do calculations in a reason-
able time, it is unlikely to find widespread
practical applications.

In gas metal arc welding, the effect of
welding variables on the weld geometry is
nonlinear and highly complex. A well-
trained and rigorously tested neural net-
work (Refs. 29–31) can be used in place of
a phenomenological model to capture the
correlations between different welding
variables and weld attributes. The neural
network models are able to predict the
outputs for different welding conditions
rapidly (Refs. 29–31). With the improve-
ments in computational hardware in re-
cent years, a large volume of training and
validation data can be generated with a
well-tested numerical heat transfer and
fluid flow model in a realistic time frame.
A neural network trained with the results
of a numerical heat transfer and fluid flow
model can correlate various output vari-
ables such as the weld pool geometry,
cooling rate, liquid velocities, and peak
temperatures with all the major welding
variables and material properties. Fur-
thermore, such correlations satisfy the
basic scientific phenomenological laws ex-
pressed in the equations of conservation
of mass, momentum, and energy. 

We show here that multiple sets of
welding variables that are capable of pro-
ducing a target weld geometry can be cal-
culated in a realistic time frame by cou-
pling a genetic algorithm with a neural
network model of gas metal arc fillet weld-

ing that has been trained with the results
of a well-tested heat transfer and fluid
flow model.

Mathematical Model

The main computational engine used
here is a neural network model (Ref. 29),
which is trained and validated using the re-
sults of a well-tested heat transfer and
fluid flow model (Refs. 11–16). The neural
network model includes all the welding
variables and material properties as input
and provides weld dimensions, peak tem-
peratures, maximum velocities, and the

Fig. 1 — The architecture of the neural net model used in this work. The input layer is comprised of 22
variables. It is connected to a hidden layer. The output of the network is either penetration, leg length, or
throat.

Fig. 2 — Comparison of output variables: A —
Penetration; B — throat, calculated by heat trans-
fer and fluid flow model (x axis) with correspond-
ing values predicted by a neural network model of
GMA fillet weld; C — leg length. The diagonal
lines in each plot show that ideally all the points
should lie on this line. The training data, valida-
tion data, and test data comprises 486, 50, and 25
datasets, respectively.
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cooling rates between 800° and 500°C.
This network has 22 input parameters that
are connected to output layer through a
hidden layer of 19 nodes as shown in Fig.
1. A hyperbolic tangent function (which is
a symmetric sigmoid function) is used as
the activation function to include nonlin-
ear behavior of different variables. A
back-propagation algorithm (Refs. 29,
33–35) was used to update the synaptic
weights of the neural network. The algo-
rithm used a hybrid method involving a ge-
netic algorithm and a conjugate gradient
technique to reduce the least square error,
E, between the actual outputs (d) and pre-
dicted values (y) (Ref. 29):

where p represents the number of training
datasets and o represents the number of
output nodes, which is one in this work.
The hybrid algorithm reduces the training
time as the conjugate gradient method
takes advantage of gradient information
to calculate the optimal solution, whereas
the genetic algorithm helps to avoid local
minima (Ref. 29). The resulting neural
network is computationally more efficient
than a phenomenological heat transfer
and fluid flow model. Furthermore, the re-
sults from the neural network model
matches the corresponding results from
the heat and fluid flow model. 

The genetic algorithm-based search for
multiple sets of welding variables to
achieve a target weld geometry starts with
many initial sets of randomly chosen val-
ues of the four most important welding
variables, i.e., current, voltage, welding
speed, and the wire feed rate. A systematic

global search is next undertaken to find
multiple sets of values of these four weld-
ing variables that lead to least error be-
tween the calculated and the target weld
dimensions, i.e., penetration, throat, and
leg length. The neural network model cal-
culates the values of these weld dimen-
sions for each set of input welding vari-
ables. The chosen values of welding
variables do not always produce the de-
sired weld dimensions and the resulting
mismatch between the computed and the
desired weld dimensions is expressed by
the following objective function, O(f): 

where pc, tc, and lc are the computed pen-
etration, throat, and leg length of the weld
bead, respectively, and pt, tt, and lt are the
corresponding target or desired values of
these three parameters. The objective
function, O(f), depends on four main
welding variables, i.e., current, I, voltage,
V, welding speed, U, and the wire feed
rate, wf.

In Equation 3, the reference values, Ir, Vr,
Ur, and (wf)r represent the order of mag-
nitude of the welding variables. Note that

Equation 3 is made nondimensional to
preserve the importance of all four weld-
ing variables by making their nondimen-
sional values comparable in magnitude.
The GA produces new individuals, or sets
of welding conditions, with iterations
based on the evolutionary principles
(Refs. 20–22, 26–28) as explained in the
Appendix. Table 1 provides the explana-
tion of various terminology used in GA re-
lated to welding. 

Genetic algorithms work with a set of
“individuals,” a population where each in-
dividual is a solution of a given problem.
The initial population defines the possible
solutions of the optimization problem, i.e.,
sets of welding variables that completely
define a weld such as current, voltage,
welding speed, contact tube-to-workpiece
distance, and wire feed rate. There are two
popular ways of representing the variables
in the population in GA: binary and real
numbers. Generally, binary representa-
tion of variables converges slowly com-
pared to the real representations. In addi-
tion, since the binary genetic algorithm
has its precision limited by the binary rep-
resentation of variables, using real num-
bers allows representation to the machine
precision. The real coded genetic algo-
rithm also has the advantage of requiring
less storage than the binary GA because a
single floating point number represents a
variable instead of many integers having
values 0 and 1. The other important ad-
vantage of using real coded GA is its ac-
curacy and precision in representing the
variables in continuous search space. 

The genetic algorithm (GA) used in
the present study is a parent centric re-
combination (PCX) operator-based gen-
eralized generation gap (G3) model (Refs.
20–22, 27–29). The generic parent-centric
recombination operator (PCX) is an elite-
preserving, scalable, and computationally
fast population-alteration model (Ref.
27). This model was chosen because it has
been shown to have a faster convergence
rate on standard test functions as com-
pared to other evolutionary algorithms
and classical optimization algorithms in-
cluding other real-parameter GAs with
the unimodal normal distribution
crossover (UNDX) and the simplex
crossover (SPX) operators, the correlated
self-adaptive evolution strategy, the co-
variance matrix adaptation evolution
strategy (CMA-ES), the differential evo-
lution technique, and the quasi-Newton
method (Ref. 27). The original G3 model
applied by Kumar et al. (Ref. 28), Kumar
and DebRoy (Ref. 20), and Mishra and
DebRoy (Refs. 21, 22) for different weld-
ing applications has very high selectivity,
since at every iteration individuals are cre-
ated using the best parent and two ran-
domly chosen individuals. The high selec-
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Table 1 — Terminology Used in Genetic Algorithm 

Biological terms Equivalent welding variables and
representation in genetic algorithm

Genes: Units containing hereditary information In the form of nondimensional variables,
f1, f2, f3, and f4, e.g., f1 = 1.10; f2 = 1.70; 
f3= 1.56; f4 = 1.34.

Chromosome/individual: A set of input variable values taken
A number of genes folded together together, i.e., (1.10, 1.70, 1.56, 1.34)

Population: Collection of many chromosomes/ Collection of multiple sets:
individuals (1.10, 1.70, 1.56, 1.34),

(1.20, 1.54, 1.65, 1.27), 
… … … …
(1.23, 1.65, 1.75, 1.45)

Parents: Chromosomes/individuals participating Parents: e.g.,  (1.10, 1.70, 1.56, 1.34),
for creating new individuals (or offsprings) (1.23, 1.65, 1.75, 1.45)

Objective function value: Value of objective Objective function: Calculated for each set
function determines if a chromosome/individual of input variables using Equation 2.
survives or dies
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tivity tends to draw the whole population
of solutions toward one side of the para-
meter space. In order to maintain diversity
in the population, a modified version of
the generalized generation gap (G3)
model is used in this work. Here we use
three randomly chosen parents to create
new individuals in place of best parent and
two randomly chosen individuals in the
original algorithm.

Results and Discussion

The neural network used here was
trained and validated with results from a
well-tested three-dimensional numerical
heat transfer and fluid flow model. A large
database of outputs for different welding
conditions was generated based on design
of experiments (DOE) (Ref. 29) to cap-
ture the correlations between the welding
variables and the weld attributes. Separate
feed-forward neural networks were devel-
oped, one each for predicting penetration,
leg length, and throat of a GMA fillet weld
in spray mode to achieve high accuracies
in the calculation of penetration, leg
length, and throat. The weights in the
neural network models were calculated
using a hybrid optimization scheme in-
volving the conjugate gradient (CG)
method and a genetic algorithm (GA).
The network was trained using only the
training data. The validation and testing
data were randomly generated indepen-
dent of the training data. The perfor-
mance of the network was tested using the
validation and testing datasets. The test-
ing data were used to check the overall
performance of the network. The hybrid
optimization scheme helped in finding op-
timal weights through a global search as
evidenced by good agreement between all
the outputs from the neural networks and
the corresponding results from the heat
and fluid flow model as shown in Fig. 2.

These results are ob-
tained for welding of A-
36 steel plates using
argon with 10% CO2 as
shielding gas and solid
feed wire of 1.32-mm di-
ameter. The droplet
transfer mechanism dur-
ing welding is assumed to
be in spray mode. The
workpiece was 450 mm in
length, 108 mm in width,
and 18 mm in depth. The
nominal composition of
A-36 steel is maximum
0.29% C, 0.80–1.2% Mn,
0.04% P, 0.05% S,
0.15–0.3% Si, and re-
maining percentage of
Fe. The neural network
model provided correct
values of penetration, ac-
tual throat, and leg length
for various combinations
of welding variables I, V,
U, and wf as shown in Fig.
2. Since GA can provide a
population of solutions, the neural net-
work model must be combined with an ap-
propriate GA to tailor weld attributes.

The effectiveness of the model pro-
posed here was tested by finding different
sets of welding variables that could pro-
vide a specified weld geometry based on
scientific principles. The computational
task involved three steps. First, a target
weld geometry was selected by specifying
one set of values of penetration, throat,
and leg length. Second, the model was run
to obtain multiple combinations of weld-
ing variable sets each of which could pro-
duce the target weld geometry. Third, and
final, the results obtained from the model
were adequately verified. These three
steps are explained in detail in the next
section.

To start the calculation, the specification
of a target geometry was necessary. It in-
volved stating realistic combinations of the
three weld dimensions, i.e., penetration,
throat, and leg length. To test the model,
these three weld dimensions from an actual
welding experiment were specified as a tar-
get geometry. If the model works correctly,
the various combinations of welding vari-
ables obtained from the model must include
a set of welding variables that are fairly close
to the set of variables used in the experi-
ment. It should be noted that the ability of
the model to produce this solution is only a
necessary, but not sufficient, component of
the model verification. Since the model pro-
duced multiple solutions, other solutions
obtained from the model had to be verified
by comparing the calculated weld geometry

Fig. 3 — Initial values of individual welding variable sets and their objective functions. A — A large space of variables was searched to find optimum solutions
as shown by 200 randomly selected initial welding variable sets; and B — the low values of the objective functions of several individuals in the initial popula-
tion indicate the possibility of existence of multiple optimal solutions. 

Fig. 4 — Variation of the minimum value and the average value of the
objective function in whole population with iterations for 5 different
randomly selected initial populations. The low value of the objective
function shows that the converged solution is independent on initial se-
lection of values of individuals in the population.
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with the experimentally obtained geometry.
In the next step (i.e., second step), a

population of 200 individuals was defined
to start the operation of GA. Each indi-
vidual in the population defined a set of

randomly chosen welding variables such
as current, voltage, welding speed, and
wire feed rate. Choice of an appropriate
population size was important. A small
population size did not allow adequate
representation of the variable space. On
the other hand, a very large population
size resulted in large computational vol-
ume. For example, Fig. 3A depicts the ini-
tial values of the individuals, i.e., sets of I,
V, U, and wf of each individual solution
with I and V plotted as their product in the
form of input arc power. Values of the
welding variables I, V, U, and wf were cho-
sen randomly in the range of 250–400 A,
27–35 V, 3.5–7.0 mm/s, and 150–250 mm/s,
respectively. The values of the welding
variables in such large ranges helped in
maintaining diversity in the solutions.
These welding variable sets were then im-
proved iteratively using a combination of
GA and the neural network. With the
progress in the calculations, the average
objective function values decreased with
iterations. An individual with a low objec-
tive function indicates correct combina-
tions of current, voltage, welding speed,
and wire feed rate that can result in the
target weld geometry. Figure 3B shows the
computed values of the objective func-
tions for all the individuals depicted in Fig.
3A. This figure shows that for many sets of
welding variables, the values of the objec-
tive function, O(f), were fairly low indicat-
ing that each of these welding variable sets
could produce a weld geometry that was
close to the target geometry. 

Figure 4 shows that the objective func-
tion decreased rapidly with iterations for
the best individual whereas the average
value of the objective function of the whole
population decreased at a relatively slower
pace. This behavior is consistent with the
fact that as GA tries to explore the solution
space, it produces new sets of welding pa-
rameters that has high values of O(f).

Figure 5A indicates several individuals
with objective function values lower than
0.01 corresponding to the 1000th genera-
tion or iteration. With the increase in

number of iterations the diversity of pop-
ulation decreases, and the solution starts
crowding in different regions. Figure 5B
and C shows the individual solutions with
objective function values less than 1 ×
10–4 and 1 × 10–5 at generations 3000 and
6000, respectively. The calculation is con-
tinued until 5% of individuals in the pop-
ulation have the value of objective func-
tion less than 1.0 × 10–6. The chosen value
of the objective function (fitness) ensured
sufficient accuracy within the practical
limits of the experimental errors. The cal-
culated combinations of the welding vari-
ables are presented in Table 2. The calcu-
lations required less than one minute in a
PC with 3.2 GHz Intel P4 CPU and 1024
Mb PC2700 DDR-SDRAM memory. It is
useful to recall that several days of com-
putational time were required on multiple
processors by a model developed by
Kumar and DebRoy (Ref. 20) that used a
numerical heat transfer and fluid flow
model. This time saved by using a neural
network justifies its use as a forward
model in place of a heat transfer and fluid
flow model. 

The third step involved verification of
the computed solutions. Since the target
geometry was produced by conducting an
experiment, an initial test is to check if the
population of solutions produced by the
model include a set of welding variables
that is very close to, if not the same as, that
used to produce the weld. Solution (a) in
Table 2 involves welding parameters that
are very close, within less than 1%, to
those used to produce the experimental
weld. This table also includes values of
other variable sets, i.e., current, voltage,
welding speed, and wire feed rate, com-
puted by the model to produce the desired
values of leg length, penetration, and
throat. Each solution, i.e., a set of current,
voltage, welding speed, and wire feed rate
was used to calculate weld geometric pa-
rameters. The computed geometric para-
meters were then compared with those
produced in the experiment. Table 2 shows
that for each set of computed welding con-

Table 2 — The Various Combinations of Welding Parameters, i.e., Arc Current (I), Arc Voltage (V), Welding Speed (U), and Wire Feed Rate (wf)
Obtained Using Neural Network Model to Achieve the Following Target Weld Dimensions: Penetration = 1.6 mm, Leg Length = 10.5 mm, and 
Throat = 7.2 mm. The Target Weld Geometry Was Obtained Experimentally Using the Following Welding Variables: I = 286.8 A, V= 33.0 V, 
U = 4.2 mm/s, and wf = 169.3 mm/s. 

Individual I V U wf Penetration Leg Length Throat
Solutions (Amp) (Volt) (mm/s) (mm/s) (mm) (mm) (mm)

(a) 285.1 33.1 4.2 172.4 1.7 10.5 7.2
(b) 293.3 32.6 4.3 211.0 1.6 10.6 7.1
(c) 298.3 31.3 4.5 216.2 1.6 10.5 7.2
(d) 290.8 33.5 4.6 210.0 1.6 10.5 7.2
(e) 292.2 33.0 4.6 213.0 1.6 10.5 7.1
(f) 303.3 30.6 4.6 210.5 1.6 10.3 7.3
(g) 294.1 31.4 4.9 227.0 1.6 10.5 7.2
(h) 294.7 31.0 5.0 231.0 1.6 10.5 7.2

Fig. 5 — Several fairly diverse welding variable sets
could produce low values of the objective function
indicating the existence of alternate paths to obtain
the target weld geometry. The plots show the weld-
ing variable sets that produced low values of the
objective function, O(f) with iterations. A — Indi-
viduals after 1000 iterations with O(f) less than 1
× 10–2; B — individuals after 3000 iterations with
O(f) less than 1 × 10–4; and C — individuals after
6000 iterations with O(f) less than 1 × 10–5.
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ditions, the corresponding geometric pa-
rameters agreed well with the desired ex-
perimental values.

A similar exercise was also undertaken
where a hypothetical weld geometry rep-
resented by a leg length of 12 mm, pene-
tration of 3.7 mm, and throat of 10 mm
were produced by a 301.6-A current, 34.6-
V voltage, 3.4-mm/s welding speed, and
228.6-mm/s wire feed rate. Table 3 lists all
other combinations of welding variables
i.e., solutions (b) to (f), that can also pro-
duce this geometry. The values of the
welding variables differ considerably from
each other. For example, the current, wire
feed rate, and welding speed vary among
solutions by 8%, 20%, and 36%, respec-
tively. It should be noted that very often
the dimensions of the weld vary by 1 to 2
mm; if we allow that much variation, then
leg length = 10.6 mm, throat = 10.1 mm,
and penetration = 3.6 mm can be ob-
tained using I = 417.5 amps, V = 37.5
volts, U = 6.7 mm/s, and wf = 234.0 mm/s.
All these differences in the important
welding variables indicate significant di-
versity in the paths, all of which lead to the
same set of target weld dimensions. 

The rapid computational methodology
involving a neural network and a genetic
algorithm described here enables realistic
tailoring of GMA fillet weld geometry
based on scientific principles for the first
time. The model computes practical
choices of alternative paths involving mul-
tiple combinations of welding variables to
achieve a desired weld geometry in less
than a minute with a commonly available
PC. It is hoped that the methodology will
serve as basis for formulating, testing, and
implementing realistic computational
tools for tailoring weld attributes to
achieve defect free, structurally sound,
and reliable welds.

Conclusions

Unlike conventional heat transfer and
fluid flow models that can predict weld
geometry for a particular set of welding
conditions, a new model has been devel-
oped that can calculate alternative weld-

ing conditions needed to obtain a target
weld geometry. The model developed is
significantly different from traditional re-
verse models that provide only one set of
welding conditions necessary for obtain-
ing a target weld geometry. In reality, a
particular weld geometry can be obtained
by using various combinations of welding
variables and the new model can calculate
these alternative pathways. The model
combines a neural network model of heat
and fluid flow with a real-number-based
genetic algorithm to calculate alternative
welding conditions needed to obtain a tar-
get weld geometry for GMA fillet welding.
The use of a neural network model in
place of a heat transfer and fluid flow
model significantly increased computa-
tional efficiency and provided multiple so-
lutions within one minute in a commonly
available computer. 

The model was used to determine mul-
tiple sets of welding variables, i.e., combi-
nations of welding current, voltage, speed,
and wire feeding rate to obtain a specified
weld pool geometry. It was found that a spe-
cific weld geometry was attainable via mul-
tiple pathways involving various sets of
welding variables. Furthermore, these sets
of welding variables involved significantly
different values of current, voltage, welding
speed, and wire feed rate. Good agreement
between the model predictions and the ex-
perimental data of leg length, penetration,
and throat for various welding conditions
shows that this approach is promising for
practical shop floor applications. Although
the work reported here focuses on tailoring
weld geometry, the results provide hope
that science-based tailoring of structure and
properties of weldments may also become
attainable in the future.

Acknowledgments

This research was supported by a grant
from the U.S. Department of Energy, Of-
fice of Basic Energy Sciences, Division of
Materials Sciences, under grant number
DE-FGO2-01ER45900. Mr. Kumar grate-
fully acknowledges award of a Fellowship
in the American Welding Society. 

Appendix: PCX-Based G3
Genetic Algorithm 

The genetic algorithm used in the pre-
sent study is a parent centric recombina-
tion (PCX) operator-based generalized
generation gap (G3) model (Refs. 20–22,
27, 28). The steps involved in the calcula-
tions are as follows: 

1. A population is a collection of many
individuals and each individual represents
a set of randomly chosen values of the four
nondimensionalized welding variables. A
parent refers to an individual in the cur-
rent population. The best parent is the in-
dividual that has the best fitness, i.e., gives
the minimum value of the objective func-
tion, defined by Equation 2 in the main
text, in the entire population. Three par-
ents are chosen randomly from the popu-
lation of solutions.

2. From the three randomly chosen
parents, two offsprings or new individuals
are generated using a recombination
scheme. PCX-based G3 models are
known to converge rapidly when three
parents and two offsprings are selected
(Ref. 27). A recombination scheme is a
process for creating new individuals from
the parents.

3. Two new parents are randomly cho-
sen from the current population of the 
individuals.

4. A subpopulation of four individuals
that includes the two randomly chosen
parents in step 3 and two new offsprings
generated in step 2 is formed.

5. The two best solutions, i.e., the solu-
tions having the least values of the objec-
tive function, are chosen from the sub-
population of four members created in
step 4. These two individuals replace the
two parents randomly chosen in step 3. 

6. The calculations are repeated from
step one again until convergence is
achieved. 

The above steps, as applied to the pre-
sent problem, are shown in Fig. 6. Figure
7 illustrates the working of the model to
find the window of welding parameters to
achieve a target weld geometry. The re-
combination scheme (step 2) used in the

Table 3 — The Various Combinations of Welding Parameters, i.e., Arc Current (I), Arc Voltage (V), Welding Speed (U), and Wire Feed Rate (wf) 
Obtained Using Neural Network Model to Achieve the Following Target Weld Dimensions: Penetration = 3.7 mm, Leg Length = 12.0 mm, and
Throat = 10.0 mm. The Target Weld Geometry Was Obtained Using the Welding Conditions Listed in (a).

Individual I V U wf Penetration Leg Length Throat
Solutions (Amp) (Volt) (mm/s) (mm/s) (mm) (mm) (mm)

(a) 301.6 34.6 3.4 228.6 3.7 12.0 10.0
(b) 306.2 34.6 3.6 236.6 3.7 12.0 10.0
(c) 300.3 34.6 3.3 225.9 3.7 12.0 10.0
(d) 311.0 35.3 4.5 270.8 3.7 12.0 10.0
(e) 290.8 35.4 4.1 260.2 3.7 12.0 10.0
(f) 314.1 33.5 3.8 239.0 3.7 11.8 10.0
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present model is based on a parent centric
recombination (PCX) operator (Refs.
20–22, 27, 28). A brief description of this
operator, as applied to the present prob-
lem, is presented below:

First three parents, i.e.,

are randomly selected from the current
population. Here the subscripts represent
the four variables or the welding parame-
ters, while the superscripts denote the par-
ent identification number. The mean vec-
tor or centroid,

of the three chosen parents is computed. To
create an offspring, one of the parents, say

is chosen randomly. The direction vector,

is next calculated from
the selected parents to the mean vector or
centroid. Thereafter, from each of the
other two parents, i.e.,

perpendicular distances, Di, to the direc-
tion vector, d(p), are computed and their av-
erage, D, is found. Finally, the offspring i.e.,

is created as follows:

where h(i) are the orthonormal bases that
span the subspace perpendicular to d(p),
and wζ and wη are randomly calculated
zero-mean normally distributed variables.
The values of the variables that character-
ize the offspring,

are calculated as follows:

where,
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Fig. 6 — The working principle of the genetic algorithm based on generalized
generation gap (G3) model and using parent centric recombination (PCX) 
operator.

Fig. 7 — Flow chart of the proposed model after coupling of generalized gen-
eration gap (G3) genetic algorithm with neural network model.

-

-
-

LAYOUT:Layout 1  12/13/06  4:00 PM  Page 32



WELDING RESEARCH

-s33WELDING JOURNAL

The various unknown variables used in
Equations A3.a to A3.h can be repre-
sented in simplified form as follows:
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