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Abstract

Weld attributes like geometry and cooling rate are strong functions of the welding process parameters such as arc current, voltage and welding
speed. A specific weld pool geometry can be produced using multiple sets of these welding variables, i.e., different combinations of arc current,
voltage and welding speed. At present, there is no systematic methodology that can determine, in a realistic time frame, these multiple paths
based on scientific principles. Here we show that multiple combinations of welding variables necessary to achieve a target gas tungsten arc (GTA)
weld geometry can be systematically computed by a real number based genetic algorithm and a neural network that has been trained with the
results of a heat transfer and fluid flow model. The neural network embodies the power of a numerical heat transfer and fluid flow model of GTA
welding, since it can predict the fusion zone geometry, peak temperature and cooling rate and its input and output variables are consistent with the
equations of conservation of mass, momentum and energy. A genetic algorithm is used to determine a population of solutions by minimizing an
objective function that represents the difference between the calculated and the desired values of weld pool penetration and width. The use of a
neural network in place of a heat transfer and fluid flow model significantly expedites the computational task. The desired weld geometry could be
obtained with various combinations of welding variable sets. The computational methodology described here enables fabrication of a weld with
desired geometry within the framework of phenomenological laws via alternative paths involving multiple combinations of welding variables.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent decades, systematic correlations between weld-
ing variables and weld characteristics have been attempted by
numerical modeling of heat and fluid flow [1-19]. The numeri-
cal models have provided significant quantitative insights in the
welding processes and the welded materials. These models have
accurately predicted temperature and velocity fields, weld pool
geometry, cooling rate, peak temperature, phase transformations
[4,16], grain structure [6,7], and weld metal compaosition change
owing to both the evaporation of alloying elements and the dis-
solution of gases [8]. Although, these powerful models have
provided significant insight about the effect of various welding
variables, their applications have been rather limited [20-22]
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for several reasons. First, the models are comprehensive and
require significant amount of computer time. Second, they are
designed to calculate temperature and velocity fields for a given
set of welding variables, i.e., they are unidirectional in nature. In
other words, they cannot predict the welding variables needed to
achieve a target weld geometry [20-22] or other weld attributes.
Finally, the GTA welding system is highly complex and involves
non-linear interaction of several welding variables. As a result,
a particular weld attribute such as the geometry can be obtained
viamultiple paths, i.e., through the use of various sets of welding
variables. What is needed, and not currently available, is for the
models to have a capability to offer various choices of welding
variable combinations, each capable of producing a target weld
attribute.

Three main requirements need to be satisfied by a model
for systematic tailoring of a weld attribute such as weld geom-
etry based on scientific principles. First, the model should be
capable of capturing all the major complex physical processes
occurring during the GTA welding. Second, the model must
have a bi-directional capability. In other words, in addition to
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the capability of the traditional unidirectional, forward models
to compute the weld shape and size from a given set of weld-
ing variables, it should also have the inverse modeling ability,
i.e., it should be able to systematically predict welding variables
needed to produce a target weld geometry. Finally, the model
must be able to determine various welding variable sets needed
to attain a target weld geometry within a reasonable time.

Since multiple paths can lead to a target weld geometry
[20-22], the classical gradient-based search and optimization
methods that produce a single optimum solution cannot be
used. These methods use a point-by-point approach, where
one relatively imperfect solution in each iteration is modified
to a different more appropriate solution [23,24]. Therefore, a
combination of a classical optimization method with a phe-
nomenological model can provide only a single local optimum
solution in situations where multiple solutions exist. In contrast,
genetic algorithms (GA) can obtain a population of optimal solu-
tions [23-26]. In the context of welding, a GA can systematically
search for multiple combinations of welding variable sets that
comply with the phenomenological laws of welding physics and
improve with iterations [20-22].

Recently, Kumar and DebRoy [20] and Mishra and DebRoy
[21,22] developed bi-directional phenomenological models of
gas metal arc (GMA) fillet welding and GTA butt welding,
respectively, by coupling a genetic algorithm based optimization
method with three-dimensional heat transfer and fluid flow mod-
els. They showed that the above approach can predict multiple
combinations of welding variables to achieve a target geome-
try. However, these models [20-22] are unsuitable for practical
applications, since they require several days of computer cal-
culations. Kumar and DebRoy [20] used a parallel computing
facility, i.e., running their model on multiple processors simul-
taneously to reduce computational time. Since it is very hard
to maintain such a sophisticated computing facility in a man-
ufacturing industry, their model can only be used for research
purposes. Unless a model can do calculations in a reasonable
time, it is unlikely to find widespread practical applications.

In GTA welding, the effect of welding variables on the weld
geometry is non-linear and highly complex. A well-trained and
rigorously tested neural network [27-30] can be used in place of
a phenomenological model to capture the correlations between
different welding variables and weld attributes. The neural net-
work models are able to predict the outputs for different welding
conditions rapidly [27-30]. With the improvements in compu-
tational hardware in recent years, a large volume of training and
validation data can be generated with a well-tested numerical
heat transfer and fluid flow model in arealistic time frame. A neu-
ral network trained with the results of a numerical heat transfer
and fluid flow model can correlate various output variables such
as the weld pool geometry, cooling rate, liquid velocities and
peak temperatures with all the major welding variables and mate-
rial properties. Furthermore, such correlations satisfy the basic
scientific phenomenological laws expressed in the equations of
conservation of mass, momentum and energy.

We show here that multiple sets of welding variables that are
capable of producing a target weld geometry can be calculated
in a realistic time frame by coupling a genetic algorithm with a

neural network model of GTA welding that has been trained with
the results of a well tested heat transfer and fluid flow model.

2. Mathematical model

The main computational engine used here is a neural network
model [27], which is trained and validated using the results of
a well-tested heat transfer and fluid flow model [8,12,17]. The
details of the neural network model have been described else-
where and are not repeated here. Only the salient features of the
model necessary for tailoring the geometry of the fusion zone are
briefly discussed here. The neural network model includes all the
welding variables and material properties as input and provides
weld dimensions, peak temperatures, maximum velocities and
the cooling rates between 800 and 500 °C. This network has 17
input parameters, which are connected to output layer through a
hidden layer of 14 nodes as shown in Fig. 1. A hyperbolic tan-
gent function (which is a symmetric sigmoid function) is used
as the activation function to include the non-linear behavior of
different variables. A back-propagation algorithm [27,31-34]
was used to update the synaptic weights of the neural network.
The algorithm used a hybrid method involving a genetic algo-
rithm and a gradient descent technique to reduce the mean square
error, MSE, between the actual outputs (d) and predicted values

(0) [27]:

MSE = 3" (dye — o) ®
q

where g represents the number of training datasets and k rep-
resents the number of output nodes, which is one in this work.
The hybrid algorithm reduces the training time as the gradi-
ent descent method takes advantage of gradient information to
calculate the optimal solution, whereas the genetic algorithm
helps to avoid local minima [27]. The resulting neural network
is computationally more efficient than a phenomenological heat
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Fig. 1. The architecture of the neural network model used in this work. The
input layer has 17 input variables, which is connected to a hidden layer. The
output of the network is either weld pool penetration or width.
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Table 1
Terminology used in genetic algorithm

Biological terms

Equivalent welding variables and representation in genetic algorithm

Genes: units containing hereditary information

Chromosome/individual: a number of genes folded together

Population: collection of many chromosomes/individuals

Parents: chromosomes/individuals participating for creating
new individuals (or offsprings)

Objective function value: value of objective function
determines if a chromosome/individual survives or dies

In the form of non-dimensional variables, f1, f, and f;. E.g., f; =1.10;
f,=1.70; f3=1.56

A set of input variable values taken together, i.e., (1.10, 1.70, 1.56)

Collection of multiple sets: (1.10, 1.70, 1.56), (1.20, 1.54,
1.65),...ccocnnnn. (1.23, 1.65, 1.75)

Parents: e.g., (1.10, 1.70, 1.56), (1.23, 1.65, 1.75)

Objective function: calculated for each set of input variables using Eq. (2)

transfer and fluid flow model as it significantly expedites the
computational speed. For example, for a given set of welding
parameters, the phenomenological heat transfer and fluid flow
model takes more than 5 min to calculate the weld pool geome-
try, while the same calculation can be done by the neural network
in less than 1 s. Furthermore, the results from the neural network
model match with the corresponding results from the heat and
fluid flow model.

The genetic algorithm (GA) based search for multiple sets of
welding variables to achieve a target weld geometry starts with
many initial sets of randomly chosen values of the three most
important welding variables, i.e., arc current, voltage and weld-
ing speed. A systematic global search is next undertaken to find
multiple sets of values of these three welding variables that lead
to least error between the calculated and the target weld dimen-
sions, i.e., penetration and width. The neural network model cal-
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culates the values of these weld dimensions for each set of input
welding variables. The chosen values of welding variables do not
always produce the desired weld dimensions and the resulting
mismatch between the computed and the desired weld dimen-
sions is expressed by the following objective function, O(f):

2 c 2
p° w
0(f)=<t—1> +<t—1> (2)
P w
where p® and w°® are the computed penetration and width of the
weld bead, respectively, and pt and w' are the corresponding
target or desired values of these attributes. The objective

function, O(f), depends on the three main welding variables,
i.e., arc current, I, voltage, V, and welding speed, U:
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Fig. 2. Comparison of output variables, i.e.: (a) penetration—training dataset, (b) penetration—testing dataset, (c) width—training dataset, and (d) width—testing dataset,
calculated by heat transfer and fluid flow model (x-axis) with corresponding values predicted by neural network (NN) model of GTA butt welding. The diagonal
lines in each plot show that ideally all the points should lie on this line. The training data and the testing data comprise of 1250 and 500 datasets, respectively.
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In Eq. (3), the reference values, I, V; and U, represent the order
of magnitude of the welding variables. Note that Eq. (3) is made
non-dimensional to preserve the importance of all three welding
variables by making their non-dimensional values comparable
in magnitude. The GA produces new individuals, or sets of
welding conditions, with iterations based on the evolutionary
principles [20-22,24-26]. The GA used in the present study is a
parent centric recombination (PCX) operator based generalized
generation gap (G3) model [20-22,24-26]. This model was
chosen because it has been shown to have a faster convergence
rate on standard test functions as compared to other evolutionary
algorithms and classical optimization algorithms [24,25]. The
specific application of this model for obtaining the multiple
sets of welding variables to achieve a target weld geometry
is described in Appendix A. Table 1 provides explanations of
various terms used in GA as related to welding.

3. Results and discussion

The neural network used here was trained and validated
with results from a well-tested three-dimensional numerical heat
transfer and fluid flow model. Separate feed forward neural net-
works were developed [27], one each for predicting penetration
and width of GTA butt welds to achieve high accuracies in
the calculation of these output parameters. The weights in the
neural network models were calculated using a hybrid optimiza-
tion scheme involving the gradient descent (GD) method and a

-
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Fig. 3. Initial values of individual welding variable sets and their objective func-
tions. (a) A large space of variables was searched to find optimum solutions as
shown by 120 randomly selected initial welding variable sets. (b) The low values
of the objective functions of several individuals in the initial population indicate
the possibility of existence of multiple optimal solutions.

genetic algorithm (GA) [27]. The hybrid optimization scheme
helped in finding optimal weights through a global search as
evidenced by good agreement between all the outputs from the
neural networks and the corresponding results from the heat
and fluid flow model [27] as shown in Fig. 2. The neural net-
work model provided correct values of penetration and width
for various combinations of welding variables I, V and U.

It has been shown in the literature [20-22] that by cou-
pling a genetic algorithm (GA) based optimization method with
three-dimensional heat transfer and fluid flow models, multi-
ple combinations of welding variables could be predicted to
achieve a target weld geometry with good accuracy, with objec-
tive function values less than 0.01. This is possible because GA
can provide a population of solutions. In the present study, the
neural network model was combined with a real number based
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Fig. 4. Several fairly diverse welding variable sets could produce low values of
the objective function indicating the existence of alternate paths to obtain the
target weld geometry. The plots show the welding variable sets that produced
low values of the objective function, O(f), with iterations: (a) individuals after
1st iteration with O(f) less than 0.1, (b) individuals after 10th iteration with O(f)
less than 0.01, and (c) individuals after 25th iteration with O(f) less than 0.001.
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Table 2

Various combinations of welding variables, i.e., arc current (1), voltage (V) and welding speed (U) obtained using neural network model to achieve the following

target weld dimensions: penetration =1.39 mm and width =4.05 mm

Individual solutions 1 (A) V (V) U (mm/s) Penetration (mm) Width (mm)
(@) 102.6 9.8 34 1.40 4.08
(b) 86.6 233 9.0 1.39 4.06
(c) 97.2 10.1 3.2 1.39 4.04
(d) 133.6 11.4 9.6 1.39 4.06
(e) 115.6 10.2 51 1.39 4.05
(f) 126.8 10.3 6.7 1.39 4.05
9) 88.6 9.7 2.2 1.39 4.04
(h) 94.3 9.5 2.6 1.39 4.06

The target weld geometry was obtained experimentally using the following welding variables: 1=101.0A, V=9.9V and U=3.4mm/s for GTA welding of 303

stainless steel (0.3 wt.% sulfur).

GA to tailor weld geometry. The effectiveness of the approach
was tested by finding different sets of welding variables, which
could provide a specified weld geometry. The computational task
involved three steps. First, a target weld geometry was selected
by specifying one set of values of penetration and width. Second,
the model was run to obtain multiple combinations of welding
variable sets each of which could produce the target weld geom-
etry. Third, and final, the results obtained from the model were
adequately verified. These three steps are explained in detail in
the following discussion.

To start the calculation, the specification of a target geom-
etry was necessary. It involved stating realistic combinations
of the weld penetration and width. To test the model, these
weld dimensions from an actual welding experiment were
specified as a target geometry. The target weld geometry was
obtained experimentally using the following welding variables:
1=101.0A, V=9.9V and U=3.4mm/s for GTA welding of
303 stainless steel (0.3wt.% sulfur), and the resulting weld
dimensions were: penetration =1.39 mm and width =4.05 mm.
If the model works correctly, the various combinations of
welding variables obtained from the model must include a
set of welding variables that are fairly close to the set of
variables used in the experiment. It should be noted that the
ability of the model to produce this solution is only a neces-
sary, but not sufficient component of the model verification.
Since the model produces multiple solutions, other solutions
obtained from the model have to be verified by comparing
the calculated weld geometry with the experimentally obtained
geometry.

Table 3

In the next step (i.e., second step), a population of 120 indi-
viduals was defined to start the operation of GA. This number
of variable sets was determined based on how the population
size influences the effectiveness of GA using standard test func-
tions [24,25]. Each individual in the population contained a set of
randomly chosen welding variables, i.e., arc current, voltage and
welding speed. Fig. 3(a) shows the initial values of the individ-
uals, i.e., sets of I, Vand U. Values of the welding variables I, V
and U were chosen randomly in the range of 75-300 A, 8-30 V
and 1.7-10.0 mm/s, respectively. Such large ranges of values
were chosen for the welding variables in order to explore a large
domain of welding variables to include all possible solutions and
also to maintain diversity in the solutions. These welding vari-
able sets were then improved iteratively using a combination of
GA and the neural network. The progress of the iterations was
monitored by calculating the objective function values, defined
in Eq. (2), for each set of welding variables. An individual with a
low objective function value indicates that the I, Vand U values
it contains result in a small discrepancy between the computed
and the target weld geometry. Fig. 3(b) shows that for many
sets of welding variables, the computed values of the objective
function, O(f), are fairly low, indicating that each of these vari-
able sets can produce a weld geometry that is close to the target
geometry.

Fig. 4(a)—(c) indicates several welding variable sets that have
progressively lower objective function values. The objective
function values are lower than 0.1, 0.01 and 0.001, corre-
sponding to the 1st, 10th and 25th generation of individuals,
respectively. It is noteworthy that in Fig. 4, the sets of welding

Various combinations of welding variables, i.e., arc current (1), voltage (V) and welding speed (U) obtained using neural network model to achieve the following

target weld dimensions: penetration =1.94 mm and width =4.39 mm

Individual solutions 1 (A) V (V) U (mm/s) Penetration (mm) Width (mm)
) 124.3 9.4 3.0 1.94 4.39
(b) 79.3 16.0 31 1.94 437
(c) 99.9 9.8 1.7 1.94 433
(d) 116.4 9.3 25 1.94 4.38
(e) 145.7 9.0 4.2 1.94 4.36
f) 89.3 12.4 2.3 1.94 4.36
(9) 107.0 9.6 2.1 1.94 4.37
(h) 175.9 8.6 6.0 1.94 4.37

The target weld geometry was obtained using the welding conditions listed in (a).
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variables are distributed throughout the welding variable space,
signifying the existence of multiple paths to attain the specified
weld geometry. The progressive reduction of the objective func-
tion values of the best individuals indicates that the solutions
are improved with iterations. The calculation was continued
until 5% individuals in the population had the value of objective
function less than 1.0 x 10~2. The chosen value of the objective

S Mishra, T. DebRoy / Materials Science and Engineering A 454-455 (2007) 477-486

function ensured sufficient accuracy within the practical limits of
experimental errors. The calculated combinations of the welding
variables, which constitute the final solutions, are presented in
Table 2. The calculations required less than 1 min in a PC with
3.0GHz Intel P4 CPU and 1024 MB PC2700 DDR-SDRAM
memory. It is useful to recall that several days of computational
time was required on the same machine by a model developed
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Fig. 5. Comparison of the experimental target weld geometry with those calculated from a well-tested heat transfer and fluid flow model for GTA welding [8,12,17].
Calculated weld geometries in cases (a)—(h) correspond to the eight solutions, i.e., sets of current, voltage and welding speed listed in Table 2. In the calculated results
the weld pool boundary is marked by the 1745 K isotherm, which is the solidus temperature of stainless steel.
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by Mishra and DebRoy [27] that used a numerical heat transfer ~ the weld. Note that the values of arc current, voltage and weld-

and fluid flow model. This time saved by using a neural network
justifies its use as a forward model in place of a heat transfer and
fluid flow model.

The third step involved verification of the computed solu-
tions. Since the target geometry was produced by conducting an
experiment, an initial test is to check if the population of solu-
tions produced by the model includes a set of welding variables
that is very close to, if not the same as, that used to produce

ing speed in solution (a) of Table 2 are almost the same as the
corresponding experimental values. Each solution, i.e., a set of
current, voltage and welding speed, listed in Table 2, was used to
calculate the geometric parameters, i.e., penetration and width
of the weld using the neural network. The computed geometric
parameters were compared with those produced in the exper-
iment. Table 2 shows that for each set of computed welding
conditions, the corresponding geometric parameters agreed well
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with the desired experimental values. In order to further test the
accuracy of the solutions, i.e., sets of current, voltage and weld-
ing speed listed in Table 2, the weld geometry for each case was
calculated from a well-tested heat transfer and fluid flow model
for GTA welding [8,12,17]. These calculated weld geometries
were compared with the experimental target weld geometry, as
shown in Fig. 5(a)—(h). The calculated weld pool boundary is
marked by the solidus temperature of stainless steel, i.e., 1745 K.
Fig. 5 shows that all the optimized solutions listed in Table 2
result in the correct prediction of the target weld shape and size.
Furthermore, the solutions in Table 2 exhibit significantly differ-
ent values of the welding variables indicating the diversity of the
paths through which the specified geometry can be obtained. For
example, Table 2 shows that the current values ranged from 86.6
t0 133.6 A, voltages varied between 9.5 and 23.3 V and welding
speed changed from 2.2 to 9.6 mm/s in various sets of optimized
values. The fact that all these diverse viable paths can lead to
the same weld pool dimensions clearly indicates the complexity
and significant non-linearity of the fusion welding system.

A similar exercise was also undertaken where a hypothetical
weld geometry represented by a penetration of 1.94 mm and a
width of 4.39 mm was produced by a current of 124.3 A, volt-
age of 9.4V and welding speed of 3.0 mm/s in 304RL stainless
steel (0.11wt.% sulfur). Table 3 lists all other combinations of
welding variables, i.e., solutions (b)—(h) that can produce this
geometry. The values of the welding variables differed consider-
ably from each other. For example, current, voltage and welding
speed varied among solutions by 38%, 30% and 55%, respec-
tively. All these differences in the important welding variables
indicate significant diversity in the paths, all of which lead to
the same set of target weld dimensions.

4. Conclusions

A bi-directional model of gas tungsten arc (GTA) weld-
ing was developed by coupling a neural network model with
a real number based genetic algorithm to calculate the weld-
ing conditions needed to obtain a target weld geometry. Unlike
conventional neural network models that are trained with exper-
imental data, which predict weld geometry for a particular set
of welding conditions, the proposed model could estimate the
welding conditions necessary for obtaining a target weld geom-
etry within the framework of phenomenological laws.

The model was used to determine multiple sets of welding
variables, i.e., combinations of arc current, voltage and weld-
ing speed to obtain a specified weld geometry. It was found
that a specific weld geometry was attainable via multiple path-
ways involving various sets of welding variables. Furthermore,
these sets of welding variables involved significantly different
values of current, voltage and welding speed. The use of a
neural network model in place of heat transfer and fluid flow
model reduced the computation time and provided the solu-
tion within 1 min. This makes the model practically usable for
welding engineers in the industry. Good agreement between the
model predictions and the experimental data of weld pool pene-
tration and width for various welding conditions shows that this
approach is promising. Although the work reported here focuses

on tailoring of weld geometry, these results provide hope that the
science based tailoring of structure and properties of weldments
may also become attainable in the future.
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Appendix A. PCX based G3 genetic algorithm

The GA used in the present study to calculate the optimized
values of the input welding variables is a parent centric recom-
bination (PCX) operator based generalized generation gap (G3)
model [24,25]. The algorithm for the model is as follows:

(1) A population is a collection of many individuals and each
individual represents a set of randomly chosen values of the
three input variables, i.e., arc current, voltage and welding
speed. A parent refers to an individual in the current pop-
ulation. The best parent is the individual that has the best
fitness, i.e., gives the minimum value of the objective func-
tion, defined by Eq. (2), in the entire population. The best
parent and two other randomly selected parents are chosen
from the population.

(2) From the three chosen parents, two offsprings or new indi-
viduals are generated using a recombination scheme. PCX
based G3 models are known to converge rapidly when three
parents and two offsprings are selected [24,25]. A recom-
bination scheme is a process for creating new individuals
from the parents.

(3) Two new parents are randomly chosen from the current
population.

(4) A subpopulation of four individuals that includes the two
randomly chosen parents in step (3) and two new offsprings
generated in step (2) is formed.

(5) The two best solutions, i.e., the solutions having the least
values of the objective function, are chosen from the sub-
population of four members created in step (4). These two
individuals replace the two parents randomly chosen in step
(3).

(6) The calculations are repeated from step (1) again until con-
vergence is achieved.

The above steps, as applied to the present study, are shown
in Fig. 6. The working of the model to find the multiple sets
of welding variables by minimizing the objective function is
illustrated in Fig. 7. The recombination scheme (step (2)) used
in the present model is based on the parent centric recombination
(PCX) operator [24,25]. A brief description of the PCX operator,
as applied to the present problem, is given as follows.

First, three parents, ie, (f°, 2, ), (fl. 3, £3)
(f2, f2, f2) are randomly selected from the current pop-
ulation. Here, the subscripts represent the three input
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chosen individuals with finiétionvilues randomly selected
individuals having lowest individuals
objective function values

Fig. 6. The working principle of the genetic algorithm based on generalized generation gap (G3) model and using parent centric recombination (PCX) operator.

welding variables, while the superscripts denote the parent
identification number. The mean vector or centroid, g =

(2 + £+ B+ + /3, (2 + 3 + f2)/3), of

the three chosen parents is computed. To create an offspring,

one of the parents, say x® = ( fl f2 O) is chosen randomly.
P _x®

The direction vector, d — @, is next calculated from the

Generate random population, i.e., selet::tefdﬁaregt to the mean vgctor olr cer11troi1d. Tzeregfterz, frozm
sets of values of (f1,f,f3) each of the other two parents, i.e., (f7, f5, f3)an (fl,f(zps iyl
) perpendicular distances, Dj, to the direction vector, d*, are
Compute the penetration and width of f:om[)uted a/nd t/heit average, D, is found. Finally, the offspring,
the weld pool for each set of values of Le..y = (f1, f2. f3), Is created as follows:
(f1,f2,f3) using the neural network -0 3 0
yzi(p)+w;‘d ‘+ > w,Dh (A1)
Compute objective function using Eq. (2) for i=Lizp
each set of values of (f,f:,fs) where 1) are the orthonormal bases that span the subspace
! perpendicular to a“”, and w, and w,, are randomly calculated
Create new sets of values of zero-mean normally distributed variables. The values of the
(f1,f2,f3) using PCX based G3 variables that characterize the offspring, y = (f, f3, f3), are
model calculated as follows:

A=A+ i+ fo (A2.3)
B=+ 1+ f2 (A2.b)
fi=f+ fa+ fa (A2.c)

where

fi—fi—f
Fig. 7. Flowchart of the proposed model after coupling of generalized generation J11 = wy (1311 (A3.2)
gap (G3) genetic algorithm with neural network model.
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Ja1 = we <2f ) (A3.b)

fa1 = w¢ <2f > (A3.c)
b 2ff 2\ ?|

fiz2 = w, <“2J2r 2) ( —Ji ) (A3.d)

f22 = wy <a2 ;bz) <2f2 ~ 1 (A3.e)

f32 = wy, (az ;—bZ) 1-— <2f3 —31;3 s ) (A3.f)

The expressions for the variables d, ap, and by, used in Egs.
(A3.d)-(A3.1), are as follows:
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