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bstract

Weld attributes like geometry and cooling rate are strong functions of the welding process parameters such as arc current, voltage and welding
peed. A specific weld pool geometry can be produced using multiple sets of these welding variables, i.e., different combinations of arc current,
oltage and welding speed. At present, there is no systematic methodology that can determine, in a realistic time frame, these multiple paths
ased on scientific principles. Here we show that multiple combinations of welding variables necessary to achieve a target gas tungsten arc (GTA)
eld geometry can be systematically computed by a real number based genetic algorithm and a neural network that has been trained with the

esults of a heat transfer and fluid flow model. The neural network embodies the power of a numerical heat transfer and fluid flow model of GTA
elding, since it can predict the fusion zone geometry, peak temperature and cooling rate and its input and output variables are consistent with the

quations of conservation of mass, momentum and energy. A genetic algorithm is used to determine a population of solutions by minimizing an
bjective function that represents the difference between the calculated and the desired values of weld pool penetration and width. The use of a

eural network in place of a heat transfer and fluid flow model significantly expedites the computational task. The desired weld geometry could be
btained with various combinations of welding variable sets. The computational methodology described here enables fabrication of a weld with
esired geometry within the framework of phenomenological laws via alternative paths involving multiple combinations of welding variables.
 2006 Elsevier B.V. All rights reserved.
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. Introduction

In recent decades, systematic correlations between weld-
ng variables and weld characteristics have been attempted by
umerical modeling of heat and fluid flow [1–19]. The numeri-
al models have provided significant quantitative insights in the
elding processes and the welded materials. These models have

ccurately predicted temperature and velocity fields, weld pool
eometry, cooling rate, peak temperature, phase transformations
4,16], grain structure [6,7], and weld metal composition change
wing to both the evaporation of alloying elements and the dis-

olution of gases [8]. Although, these powerful models have
rovided significant insight about the effect of various welding
ariables, their applications have been rather limited [20–22]
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or several reasons. First, the models are comprehensive and
equire significant amount of computer time. Second, they are
esigned to calculate temperature and velocity fields for a given
et of welding variables, i.e., they are unidirectional in nature. In
ther words, they cannot predict the welding variables needed to
chieve a target weld geometry [20–22] or other weld attributes.
inally, the GTA welding system is highly complex and involves
on-linear interaction of several welding variables. As a result,
particular weld attribute such as the geometry can be obtained
ia multiple paths, i.e., through the use of various sets of welding
ariables. What is needed, and not currently available, is for the
odels to have a capability to offer various choices of welding

ariable combinations, each capable of producing a target weld
ttribute.

Three main requirements need to be satisfied by a model
or systematic tailoring of a weld attribute such as weld geom-

try based on scientific principles. First, the model should be
apable of capturing all the major complex physical processes
ccurring during the GTA welding. Second, the model must
ave a bi-directional capability. In other words, in addition to

mailto:debroy@matse.psu.edu
dx.doi.org/10.1016/j.msea.2006.11.149
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ent descent method takes advantage of gradient information to
calculate the optimal solution, whereas the genetic algorithm
helps to avoid local minima [27]. The resulting neural network
is computationally more efficient than a phenomenological heat
78 S. Mishra, T. DebRoy / Materials Science

he capability of the traditional unidirectional, forward models
o compute the weld shape and size from a given set of weld-
ng variables, it should also have the inverse modeling ability,
.e., it should be able to systematically predict welding variables
eeded to produce a target weld geometry. Finally, the model
ust be able to determine various welding variable sets needed

o attain a target weld geometry within a reasonable time.
Since multiple paths can lead to a target weld geometry

20–22], the classical gradient-based search and optimization
ethods that produce a single optimum solution cannot be

sed. These methods use a point-by-point approach, where
ne relatively imperfect solution in each iteration is modified
o a different more appropriate solution [23,24]. Therefore, a
ombination of a classical optimization method with a phe-
omenological model can provide only a single local optimum
olution in situations where multiple solutions exist. In contrast,
enetic algorithms (GA) can obtain a population of optimal solu-
ions [23–26]. In the context of welding, a GA can systematically
earch for multiple combinations of welding variable sets that
omply with the phenomenological laws of welding physics and
mprove with iterations [20–22].

Recently, Kumar and DebRoy [20] and Mishra and DebRoy
21,22] developed bi-directional phenomenological models of
as metal arc (GMA) fillet welding and GTA butt welding,
espectively, by coupling a genetic algorithm based optimization
ethod with three-dimensional heat transfer and fluid flow mod-

ls. They showed that the above approach can predict multiple
ombinations of welding variables to achieve a target geome-
ry. However, these models [20–22] are unsuitable for practical
pplications, since they require several days of computer cal-
ulations. Kumar and DebRoy [20] used a parallel computing
acility, i.e., running their model on multiple processors simul-
aneously to reduce computational time. Since it is very hard
o maintain such a sophisticated computing facility in a man-
facturing industry, their model can only be used for research
urposes. Unless a model can do calculations in a reasonable
ime, it is unlikely to find widespread practical applications.

In GTA welding, the effect of welding variables on the weld
eometry is non-linear and highly complex. A well-trained and
igorously tested neural network [27–30] can be used in place of
phenomenological model to capture the correlations between
ifferent welding variables and weld attributes. The neural net-
ork models are able to predict the outputs for different welding

onditions rapidly [27–30]. With the improvements in compu-
ational hardware in recent years, a large volume of training and
alidation data can be generated with a well-tested numerical
eat transfer and fluid flow model in a realistic time frame. A neu-
al network trained with the results of a numerical heat transfer
nd fluid flow model can correlate various output variables such
s the weld pool geometry, cooling rate, liquid velocities and
eak temperatures with all the major welding variables and mate-
ial properties. Furthermore, such correlations satisfy the basic
cientific phenomenological laws expressed in the equations of

onservation of mass, momentum and energy.

We show here that multiple sets of welding variables that are
apable of producing a target weld geometry can be calculated
n a realistic time frame by coupling a genetic algorithm with a
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eural network model of GTA welding that has been trained with
he results of a well tested heat transfer and fluid flow model.

. Mathematical model

The main computational engine used here is a neural network
odel [27], which is trained and validated using the results of
well-tested heat transfer and fluid flow model [8,12,17]. The
etails of the neural network model have been described else-
here and are not repeated here. Only the salient features of the
odel necessary for tailoring the geometry of the fusion zone are

riefly discussed here. The neural network model includes all the
elding variables and material properties as input and provides
eld dimensions, peak temperatures, maximum velocities and

he cooling rates between 800 and 500 ◦C. This network has 17
nput parameters, which are connected to output layer through a
idden layer of 14 nodes as shown in Fig. 1. A hyperbolic tan-
ent function (which is a symmetric sigmoid function) is used
s the activation function to include the non-linear behavior of
ifferent variables. A back-propagation algorithm [27,31–34]
as used to update the synaptic weights of the neural network.
he algorithm used a hybrid method involving a genetic algo-

ithm and a gradient descent technique to reduce the mean square
rror, MSE, between the actual outputs (d) and predicted values
o) [27]:

SE = 1

q

∑
q

(dqk − oqk)2 (1)

here q represents the number of training datasets and k rep-
esents the number of output nodes, which is one in this work.
he hybrid algorithm reduces the training time as the gradi-
ig. 1. The architecture of the neural network model used in this work. The
nput layer has 17 input variables, which is connected to a hidden layer. The
utput of the network is either weld pool penetration or width.
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Table 1
Terminology used in genetic algorithm

Biological terms Equivalent welding variables and representation in genetic algorithm

Genes: units containing hereditary information In the form of non-dimensional variables, f1, f2 and f3. E.g., f1 = 1.10;
f2 = 1.70; f3 = 1.56

Chromosome/individual: a number of genes folded together A set of input variable values taken together, i.e., (1.10, 1.70, 1.56)

Population: collection of many chromosomes/individuals Collection of multiple sets: (1.10, 1.70, 1.56), (1.20, 1.54,
1.65), . . . . . . . . . . . . (1.23, 1.65, 1.75)

Parents: chromosomes/individuals participating for creating Parents: e.g., (1.10, 1.70, 1.56), (1.23, 1.65, 1.75)
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new individuals (or offsprings)
bjective function value: value of objective function
determines if a chromosome/individual survives or dies

ransfer and fluid flow model as it significantly expedites the
omputational speed. For example, for a given set of welding
arameters, the phenomenological heat transfer and fluid flow
odel takes more than 5 min to calculate the weld pool geome-

ry, while the same calculation can be done by the neural network
n less than 1 s. Furthermore, the results from the neural network

odel match with the corresponding results from the heat and
uid flow model.

The genetic algorithm (GA) based search for multiple sets of
elding variables to achieve a target weld geometry starts with
any initial sets of randomly chosen values of the three most

mportant welding variables, i.e., arc current, voltage and weld-

ng speed. A systematic global search is next undertaken to find

ultiple sets of values of these three welding variables that lead
o least error between the calculated and the target weld dimen-
ions, i.e., penetration and width. The neural network model cal-

i

O

ig. 2. Comparison of output variables, i.e.: (a) penetration–training dataset, (b) penet
alculated by heat transfer and fluid flow model (x-axis) with corresponding values
ines in each plot show that ideally all the points should lie on this line. The training
Objective function: calculated for each set of input variables using Eq. (2)

ulates the values of these weld dimensions for each set of input
elding variables. The chosen values of welding variables do not

lways produce the desired weld dimensions and the resulting
ismatch between the computed and the desired weld dimen-

ions is expressed by the following objective function, O(f):

(f ) =
(

pc

pt − 1

)2

+
(

wc

wt − 1

)2

(2)

here pc and wc are the computed penetration and width of the
eld bead, respectively, and pt and wt are the corresponding

arget or desired values of these attributes. The objective
unction, O(f), depends on the three main welding variables,

.e., arc current, I, voltage, V, and welding speed, U:

(f ) = O(f1, f2, f3) = O

(
I

Ir
,

V

Vr
,

U

Ur

)
(3)

ration–testing dataset, (c) width–training dataset, and (d) width–testing dataset,
predicted by neural network (NN) model of GTA butt welding. The diagonal
data and the testing data comprise of 1250 and 500 datasets, respectively.
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achieve a target weld geometry with good accuracy, with objec-
tive function values less than 0.01. This is possible because GA
can provide a population of solutions. In the present study, the
neural network model was combined with a real number based
80 S. Mishra, T. DebRoy / Materials Science

n Eq. (3), the reference values, Ir, Vr and Ur represent the order
f magnitude of the welding variables. Note that Eq. (3) is made
on-dimensional to preserve the importance of all three welding
ariables by making their non-dimensional values comparable
n magnitude. The GA produces new individuals, or sets of
elding conditions, with iterations based on the evolutionary
rinciples [20–22,24–26]. The GA used in the present study is a
arent centric recombination (PCX) operator based generalized
eneration gap (G3) model [20–22,24–26]. This model was
hosen because it has been shown to have a faster convergence
ate on standard test functions as compared to other evolutionary
lgorithms and classical optimization algorithms [24,25]. The
pecific application of this model for obtaining the multiple
ets of welding variables to achieve a target weld geometry
s described in Appendix A. Table 1 provides explanations of
arious terms used in GA as related to welding.

. Results and discussion

The neural network used here was trained and validated
ith results from a well-tested three-dimensional numerical heat

ransfer and fluid flow model. Separate feed forward neural net-
orks were developed [27], one each for predicting penetration
nd width of GTA butt welds to achieve high accuracies in
he calculation of these output parameters. The weights in the
eural network models were calculated using a hybrid optimiza-
ion scheme involving the gradient descent (GD) method and a

ig. 3. Initial values of individual welding variable sets and their objective func-
ions. (a) A large space of variables was searched to find optimum solutions as
hown by 120 randomly selected initial welding variable sets. (b) The low values
f the objective functions of several individuals in the initial population indicate
he possibility of existence of multiple optimal solutions.
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1
l

ngineering A  454–455 (2007) 477–486

enetic algorithm (GA) [27]. The hybrid optimization scheme
elped in finding optimal weights through a global search as
videnced by good agreement between all the outputs from the
eural networks and the corresponding results from the heat
nd fluid flow model [27] as shown in Fig. 2. The neural net-
ork model provided correct values of penetration and width

or various combinations of welding variables I, V and U.
It has been shown in the literature [20–22] that by cou-

ling a genetic algorithm (GA) based optimization method with
hree-dimensional heat transfer and fluid flow models, multi-
le combinations of welding variables could be predicted to
ig. 4. Several fairly diverse welding variable sets could produce low values of
he objective function indicating the existence of alternate paths to obtain the
arget weld geometry. The plots show the welding variable sets that produced
ow values of the objective function, O(f), with iterations: (a) individuals after
st iteration with O(f) less than 0.1, (b) individuals after 10th iteration with O(f)
ess than 0.01, and (c) individuals after 25th iteration with O(f) less than 0.001.
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Table 2
Various combinations of welding variables, i.e., arc current (I), voltage (V) and welding speed (U) obtained using neural network model to achieve the following
target weld dimensions: penetration = 1.39 mm and width = 4.05 mm

Individual solutions I (A) V (V) U (mm/s) Penetration (mm) Width (mm)

(a) 102.6 9.8 3.4 1.40 4.08
(b) 86.6 23.3 9.0 1.39 4.06
(c) 97.2 10.1 3.2 1.39 4.04
(d) 133.6 11.4 9.6 1.39 4.06
(e) 115.6 10.2 5.1 1.39 4.05
(f) 126.8 10.3 6.7 1.39 4.05
(g) 88.6 9.7 2.2 1.39 4.04
(
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h) 94.3 9.5

he target weld geometry was obtained experimentally using the following w
tainless steel (0.3 wt.% sulfur).

A to tailor weld geometry. The effectiveness of the approach
as tested by finding different sets of welding variables, which

ould provide a specified weld geometry. The computational task
nvolved three steps. First, a target weld geometry was selected
y specifying one set of values of penetration and width. Second,
he model was run to obtain multiple combinations of welding
ariable sets each of which could produce the target weld geom-
try. Third, and final, the results obtained from the model were
dequately verified. These three steps are explained in detail in
he following discussion.

To start the calculation, the specification of a target geom-
try was necessary. It involved stating realistic combinations
f the weld penetration and width. To test the model, these
eld dimensions from an actual welding experiment were

pecified as a target geometry. The target weld geometry was
btained experimentally using the following welding variables:
= 101.0 A, V = 9.9 V and U = 3.4 mm/s for GTA welding of
03 stainless steel (0.3 wt.% sulfur), and the resulting weld
imensions were: penetration = 1.39 mm and width = 4.05 mm.
f the model works correctly, the various combinations of
elding variables obtained from the model must include a

et of welding variables that are fairly close to the set of
ariables used in the experiment. It should be noted that the
bility of the model to produce this solution is only a neces-
ary, but not sufficient component of the model verification.

ince the model produces multiple solutions, other solutions
btained from the model have to be verified by comparing
he calculated weld geometry with the experimentally obtained
eometry.

p
f
s
r

able 3
arious combinations of welding variables, i.e., arc current (I), voltage (V) and weld

arget weld dimensions: penetration = 1.94 mm and width = 4.39 mm

ndividual solutions I (A) V (V)

a) 124.3 9.4
b) 79.3 16.0
c) 99.9 9.8
d) 116.4 9.3
e) 145.7 9.0
f) 89.3 12.4
g) 107.0 9.6
h) 175.9 8.6

he target weld geometry was obtained using the welding conditions listed in (a).
2.6 1.39 4.06

g variables: I = 101.0 A, V = 9.9 V and U = 3.4 mm/s for GTA welding of 303

In the next step (i.e., second step), a population of 120 indi-
iduals was defined to start the operation of GA. This number
f variable sets was determined based on how the population
ize influences the effectiveness of GA using standard test func-
ions [24,25]. Each individual in the population contained a set of
andomly chosen welding variables, i.e., arc current, voltage and
elding speed. Fig. 3(a) shows the initial values of the individ-
als, i.e., sets of I, V and U. Values of the welding variables I, V
nd U were chosen randomly in the range of 75–300 A, 8–30 V
nd 1.7–10.0 mm/s, respectively. Such large ranges of values
ere chosen for the welding variables in order to explore a large
omain of welding variables to include all possible solutions and
lso to maintain diversity in the solutions. These welding vari-
ble sets were then improved iteratively using a combination of
A and the neural network. The progress of the iterations was
onitored by calculating the objective function values, defined

n Eq. (2), for each set of welding variables. An individual with a
ow objective function value indicates that the I, V and U values
t contains result in a small discrepancy between the computed
nd the target weld geometry. Fig. 3(b) shows that for many
ets of welding variables, the computed values of the objective
unction, O(f), are fairly low, indicating that each of these vari-
ble sets can produce a weld geometry that is close to the target
eometry.

Fig. 4(a)–(c) indicates several welding variable sets that have

rogressively lower objective function values. The objective
unction values are lower than 0.1, 0.01 and 0.001, corre-
ponding to the 1st, 10th and 25th generation of individuals,
espectively. It is noteworthy that in Fig. 4, the sets of welding

ing speed (U) obtained using neural network model to achieve the following

U (mm/s) Penetration (mm) Width (mm)

3.0 1.94 4.39
3.1 1.94 4.37
1.7 1.94 4.33
2.5 1.94 4.38
4.2 1.94 4.36
2.3 1.94 4.36
2.1 1.94 4.37
6.0 1.94 4.37
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ariables are distributed throughout the welding variable space,
ignifying the existence of multiple paths to attain the specified
eld geometry. The progressive reduction of the objective func-
ion values of the best individuals indicates that the solutions
re improved with iterations. The calculation was continued
ntil 5% individuals in the population had the value of objective
unction less than 1.0 × 10−5. The chosen value of the objective

T
3
m
t

ig. 5. Comparison of the experimental target weld geometry with those calculated fr
alculated weld geometries in cases (a)–(h) correspond to the eight solutions, i.e., sets

he weld pool boundary is marked by the 1745 K isotherm, which is the solidus temp
ngineering A  454–455 (2007) 477–486

unction ensured sufficient accuracy within the practical limits of
xperimental errors. The calculated combinations of the welding
ariables, which constitute the final solutions, are presented in

able 2. The calculations required less than 1 min in a PC with
.0 GHz Intel P4 CPU and 1024 MB PC2700 DDR-SDRAM
emory. It is useful to recall that several days of computational

ime was required on the same machine by a model developed

om a well-tested heat transfer and fluid flow model for GTA welding [8,12,17].
of current, voltage and welding speed listed in Table 2. In the calculated results

erature of stainless steel.
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Fig. 5. (

y Mishra and DebRoy [27] that used a numerical heat transfer
nd fluid flow model. This time saved by using a neural network
ustifies its use as a forward model in place of a heat transfer and
uid flow model.

The third step involved verification of the computed solu-

ions. Since the target geometry was produced by conducting an
xperiment, an initial test is to check if the population of solu-
ions produced by the model includes a set of welding variables
hat is very close to, if not the same as, that used to produce

o
p
i
c

nued ).

he weld. Note that the values of arc current, voltage and weld-
ng speed in solution (a) of Table 2 are almost the same as the
orresponding experimental values. Each solution, i.e., a set of
urrent, voltage and welding speed, listed in Table 2, was used to
alculate the geometric parameters, i.e., penetration and width

f the weld using the neural network. The computed geometric
arameters were compared with those produced in the exper-
ment. Table 2 shows that for each set of computed welding
onditions, the corresponding geometric parameters agreed well
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ith the desired experimental values. In order to further test the
ccuracy of the solutions, i.e., sets of current, voltage and weld-
ng speed listed in Table 2, the weld geometry for each case was
alculated from a well-tested heat transfer and fluid flow model
or GTA welding [8,12,17]. These calculated weld geometries
ere compared with the experimental target weld geometry, as

hown in Fig. 5(a)–(h). The calculated weld pool boundary is
arked by the solidus temperature of stainless steel, i.e., 1745 K.
ig. 5 shows that all the optimized solutions listed in Table 2
esult in the correct prediction of the target weld shape and size.
urthermore, the solutions in Table 2 exhibit significantly differ-
nt values of the welding variables indicating the diversity of the
aths through which the specified geometry can be obtained. For
xample, Table 2 shows that the current values ranged from 86.6
o 133.6 A, voltages varied between 9.5 and 23.3 V and welding
peed changed from 2.2 to 9.6 mm/s in various sets of optimized
alues. The fact that all these diverse viable paths can lead to
he same weld pool dimensions clearly indicates the complexity
nd significant non-linearity of the fusion welding system.

A similar exercise was also undertaken where a hypothetical
eld geometry represented by a penetration of 1.94 mm and a
idth of 4.39 mm was produced by a current of 124.3 A, volt-

ge of 9.4 V and welding speed of 3.0 mm/s in 304RL stainless
teel (0.11 wt.% sulfur). Table 3 lists all other combinations of
elding variables, i.e., solutions (b)–(h) that can produce this
eometry. The values of the welding variables differed consider-
bly from each other. For example, current, voltage and welding
peed varied among solutions by 38%, 30% and 55%, respec-
ively. All these differences in the important welding variables
ndicate significant diversity in the paths, all of which lead to
he same set of target weld dimensions.

. Conclusions

A bi-directional model of gas tungsten arc (GTA) weld-
ng was developed by coupling a neural network model with

real number based genetic algorithm to calculate the weld-
ng conditions needed to obtain a target weld geometry. Unlike
onventional neural network models that are trained with exper-
mental data, which predict weld geometry for a particular set
f welding conditions, the proposed model could estimate the
elding conditions necessary for obtaining a target weld geom-

try within the framework of phenomenological laws.
The model was used to determine multiple sets of welding

ariables, i.e., combinations of arc current, voltage and weld-
ng speed to obtain a specified weld geometry. It was found
hat a specific weld geometry was attainable via multiple path-
ays involving various sets of welding variables. Furthermore,

hese sets of welding variables involved significantly different
alues of current, voltage and welding speed. The use of a
eural network model in place of heat transfer and fluid flow
odel reduced the computation time and provided the solu-

ion within 1 min. This makes the model practically usable for

elding engineers in the industry. Good agreement between the
odel predictions and the experimental data of weld pool pene-

ration and width for various welding conditions shows that this
pproach is promising. Although the work reported here focuses

a

(
u

ngineering A  454–455 (2007) 477–486

n tailoring of weld geometry, these results provide hope that the
cience based tailoring of structure and properties of weldments
ay also become attainable in the future.
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ppendix A. PCX based G3 genetic algorithm

The GA used in the present study to calculate the optimized
alues of the input welding variables is a parent centric recom-
ination (PCX) operator based generalized generation gap (G3)
odel [24,25]. The algorithm for the model is as follows:

1) A population is a collection of many individuals and each
individual represents a set of randomly chosen values of the
three input variables, i.e., arc current, voltage and welding
speed. A parent refers to an individual in the current pop-
ulation. The best parent is the individual that has the best
fitness, i.e., gives the minimum value of the objective func-
tion, defined by Eq. (2), in the entire population. The best
parent and two other randomly selected parents are chosen
from the population.

2) From the three chosen parents, two offsprings or new indi-
viduals are generated using a recombination scheme. PCX
based G3 models are known to converge rapidly when three
parents and two offsprings are selected [24,25]. A recom-
bination scheme is a process for creating new individuals
from the parents.

3) Two new parents are randomly chosen from the current
population.

4) A subpopulation of four individuals that includes the two
randomly chosen parents in step (3) and two new offsprings
generated in step (2) is formed.

5) The two best solutions, i.e., the solutions having the least
values of the objective function, are chosen from the sub-
population of four members created in step (4). These two
individuals replace the two parents randomly chosen in step
(3).

6) The calculations are repeated from step (1) again until con-
vergence is achieved.

The above steps, as applied to the present study, are shown
n Fig. 6. The working of the model to find the multiple sets
f welding variables by minimizing the objective function is
llustrated in Fig. 7. The recombination scheme (step (2)) used
n the present model is based on the parent centric recombination
PCX) operator [24,25]. A brief description of the PCX operator,

s applied to the present problem, is given as follows.

First, three parents, i.e., (f 0
1 , f 0

2 , f 0
3 ), (f 1

1 , f 1
2 , f 1

3 ),
f 2

1 , f 2
2 , f 2

3 ) are randomly selected from the current pop-
lation. Here, the subscripts represent the three input
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Fig. 6. The working principle of the genetic algorithm based on generalized generati

Fig. 7. Flowchart of the proposed model after coupling of generalized generation
gap (G3) genetic algorithm with neural network model.
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on gap (G3) model and using parent centric recombination (PCX) operator.

elding variables, while the superscripts denote the parent
dentification number. The mean vector or centroid, �g =
(f 0

1 + f 1
1 + f 2

1 )/3, (f 0
2 + f 1

2 + f 2
2 )/3, (f 0

3 + f 1
3 + f 2

3 )/3), of
he three chosen parents is computed. To create an offspring,
ne of the parents, say �x(p) = (f 0

1 , f 0
2 , f 0

3 ) is chosen randomly.

he direction vector, �d
(p) = �x(p) − �g, is next calculated from the

elected parent to the mean vector or centroid. Thereafter, from
ach of the other two parents, i.e., (f 1

1 , f 1
2 , f 1

3 ) and (f 2
1 , f 2

2 , f 2
3 ),

erpendicular distances, Di, to the direction vector, �d(p)
, are

omputed and their average, D̄, is found. Finally, the offspring,
.e., �y = (f ′

1, f
′
2, f

′
3), is created as follows:

� = �x(p) + wζ

∣∣∣∣�d(p)
∣∣∣∣+

3∑
i=1,i�=p

wηD̄�h
(i)

(A1)

here �h(i)
are the orthonormal bases that span the subspace

erpendicular to �d(p)
, and wζ and wη are randomly calculated

ero-mean normally distributed variables. The values of the
ariables that characterize the offspring, �y = (f ′

1, f
′
2, f

′
3), are

alculated as follows:

′
1 = f 0

1 + f11 + f12 (A2.a)

′
2 = f 0

2 + f21 + f22 (A2.b)

′
3 = f 0

3 + f31 + f32 (A2.c)
here

11 = wζ

(
2f 0

1 − f 1
1 − f 2

1

3

)
(A3.a)
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21 = wζ

(
2f 0

2 − f 1
2 − f 2

2

3

)
(A3.b)

31 = wζ

(
2f 0

3 − f 1
3 − f 2

3

3

)
(A3.c)

12 = wη

(
a2 + b2

2

)⎡⎣1 −
(

2f 0
1 − f 1

1 − f 2
1

3d

)2
⎤
⎦ (A3.d)

22 = wη

(
a2 + b2

2

)⎡⎣1 −
(

2f 0
2 − f 1

2 − f 2
2

3d

)2
⎤
⎦ (A3.e)

32 = wη

(
a2 + b2

2

)⎡⎣1 −
(

2f 0
3 − f 1

3 − f 2
3

3d

)2
⎤
⎦ (A3.f)

he expressions for the variables d, a2, and b2, used in Eqs.
A3.d)–(A3.f), are as follows:

=

√√√√(2f 0
1 − f 1

1 − f 2
1

3

)2

+
(

2f 0
2 − f 1

2 − f 2
2

3

)2

+
(

2f 0
3 −

2 = e1 ×
√

1 − (a1)2 (A4.b)

2 = e2 ×
√

1 − (b1)2 (A4.c)

1 =
3∑

i=1

(f 1
i − f 0

i )((2f 0
i − f 1

i − f 2
i )/3)

d × e1
(A4.d)

1 =
√

(f 1
1 − f 0

1 )
2 + (f 1

2 − f 0
2 )

2 + (f 1
3 − f 0

3 )
2

(A4.e)

1 =
3∑

i=1

(f 2
i − f 0

i )((2f 0
i − f 1

i − f 2
i )/3)

d × e2
(A4.f)

2 =
√

(f 2
1 − f 0

1 )
2 + (f 2

2 − f 0
2 )

2 + (f 2
3 − f 0

3 )
2

(A4.g)
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