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ABSTRACT. In recent years, numerical
heat and fluid flow models have provided
significant insight into welding processes
and welded materials that could not have
been achieved otherwise. However, these
calculations are complex and time con-
suming, and are unsuitable in situations
where rapid calculations are desired. A
practical solution to this problem is to de-
velop a neural network that is trained with
the data generated by a numerical heat
and fluid flow model. Apart from provid-
ing high computational speed, the results
of this neural network conform to the
basic laws of conservation of mass, mo-
mentum, and energy.

In the present study, six feed-forward
neural networks have been developed for
the gas tungsten arc (GTA) welding of
low-carbon steel. Each network provides
one of the six output parameters of GTA
welds, i.e., depth, width, and length of the
weld pool, peak temperature, cooling time
from 800° to 500°C, and maximum liquid
velocity. The networks require values of
17 input parameters including the welding
variables like current, voltage, welding
speed, arc efficiency, arc radius, and
power distribution factor, and material
properties like thermal conductivity and
specific heat. The weights of the neural
networks were calculated using two opti-
mization schemes, first using the gradient
descent (GD) method with various sets of
randomized initial weights, and then ap-
plying a hybrid optimization scheme
where a genetic algorithm (GA) is used in
combination with the GD method. The

neural networks produced by the hybrid
optimization approach gave better results
than all the networks based on only the
GD method. Unlike the GD method
alone, the hybrid optimization scheme
could find the significantly better weights,
which is illustrated by the good agreement
between all the outputs from the neural
networks and the corresponding results
from the heat and fluid flow model.

Introduction

In recent decades, systematic correla-
tions between welding variables and weld
characteristics have been attempted by
numerical modeling of heat and fluid flow
(Refs. 1–19) and artificial neural networks
(Refs. 20–42). Numerical models of heat
and fluid flow have provided significant
quantitative insights into welding
processes and welded materials. These
models have accurately predicted temper-
ature and velocity fields, weld pool geom-
etry, cooling rate, peak temperature,
phase transformations (Ref. 20), grain
structure (Refs. 6, 7), inclusion structure
(Refs. 43, 44), and weld metal composition
change owing to both the evaporation of
alloying elements and the dissolution of

gases (Ref. 8). Although these models are
recognized as powerful tools for research,
they are not extensively used in the weld-
ing industry because these are complex,
require specialized training to develop
and test, and consume a large amount of
computer time to run.

Neural network models are powerful
nonlinear regression analysis methods
(Refs. 20, 21, 45–47) that can relate input
variables like welding process parameters
and material properties with weld charac-
teristics such as weld pool geometry. The
previous efforts to model the GTAW
process using a neural network were based
on training the network with experimental
data (Refs. 27, 32, 38). Since the volume of
experimental data required to train a
neural network depends on the number of
input and output variables, most previous
efforts considered only a few input para-
meters to keep the necessary volume of ex-
perimental data tractable (Refs. 27, 32,
38). For example, Tarng et al. (Ref. 27),
Andersen et al. (Ref. 32), and Juang et al.
(Ref. 38) developed neural network mod-
els of the GTA welding process, which
considered the effects of process parame-
ters like welding speed, arc current, and
voltage as inputs. These neural network
models were developed using a limited
volume of experimental data, and they
could not determine the effect of material
properties like thermal conductivity, spe-
cific heat, etc., on weld pool geometry.
Furthermore, the output variables consid-
ered in these neural networks were also
limited. For example, the existing neural
network models do not provide any infor-
mation about some of the important para-
meters such as the cooling rate and peak
temperature. A review of previous work
indicates that what is needed is a frame-
work for rapid calculation of weld pool
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geometry, cooling rate, and peak temper-
ature for the GTA welding of various
materials.

In the present work, a neural network
has been trained with the results of a well-
tested numerical heat and fluid flow
model (Refs. 2, 8, 12). The neural network
correlates various output parameters such
as weld pool geometry, cooling rate, peak
temperature, and maximum liquid veloc-
ity with all the major welding variables and
material properties. Of these variables,
the geometry and cooling rates affect the
weld properties. The peak temperature
and the velocities are important in under-
standing the role of convective heat trans-
fer and mixing in the weld pool. Since the
training data are made up of results from
a reliable numerical heat transfer and
fluid flow model, the output of the trained
neural network will comply with the basic
phenomenological laws of welding
physics. This paper seeks to document the
problems, issues, and lessons learned in
the development of a neural network
model from the results of a heat transfer
and fluid flow model. The neural network
is validated by checking its performance
for different sets of material properties
and welding conditions, which were not a
part of the training data.

The Mathematical Model

Neural Network Model

In the present study, six feed-forward
neural networks have been developed for
the gas tungsten arc (GTA) welding of

low-carbon steel with no filler metal. Par-
tial joint penetration welds with a flat top
surface are assumed. Each neural network
takes 17 input variables that include vari-
ous welding variables such as arc current,
voltage, welding speed, and material prop-
erties such as thermal conductivity, spe-
cific heat, and provides a single output,
which can be one of the six output para-
meters, i.e., depth, width, and length of the
weld pool, peak temperature, cooling time
between 800°C and 500°C, and maximum
liquid velocity in the weld pool. The cool-
ing time was calculated on the workpiece
surface along the welding direction. The
input variables such as arc efficiency, arc
power distribution factor, and arc radius
determine how heat is absorbed at various
locations in the workpiece (Ref. 10). Since
temperature-independent thermophysi-
cal properties of the solid alloy are used in
the model, a question arises as to how to
select their values. Since the heat flow in
the solid region near the weld pool affects
both the size and shape of the weld pool as
well as the temperature field in the entire
workpiece, it is appropriate to use ther-
mophysical properties at a temperature
closer to the melting point than to the am-
bient temperature. Effective thermal con-
ductivity and effective viscosity are used as
input variables because they allow accu-
rate modeling of the turbulence effect in
the weld pool. These two variables are sys-
tem properties, and their values are ob-
tained by enhancing the molecular values
of liquid thermal conductivity and viscos-
ity, respectively. Appropriate values of
these two variables for GTA welding of

low-carbon steel have been determined in
the literature (Ref. 5) through reverse
modeling.

The structure of each neural network,
along with all the input and output vari-
ables, is shown in Fig. 1. Each neural net-
work contains an input layer, a hidden
layer, and an output layer. The input layer
contains all the 17 input variables, which
are connected to nodes in the hidden
layer, represented by circles in Fig. 1,
through the weights assigned for each link.
The number of nodes in the hidden layer
is found by optimizing the network. Each
connection to a node, j, from a node in the
previous layer, i, has an adjustable weight,
wij, associated with it. The weights, wij, em-
body the nonlinear relationship between
the input and the output variables. Also,
each node in the hidden and the output
layers is given an extra input, which always
has a value of 1. The weight of this extra
input is called the bias. The net input, vj,
for a node, j, is given as

where i is a node in the previous layer, wij
is the weight of the connection between
nodes j and i, yi is the output of node i, and
wθ is the bias weight. Equation 1 is calcu-
lated for all the nodes in the hidden layers
as well as the output layer.

Now, the output of node j is calculated
by using a transfer function. A hyperbolic
tangent function (a symmetric sigmoid
function), which is a nonlinear function
producing output between –1 and 1, is
used as transfer function for the nodes in

v w y w
j i ij
= +∑

i
(1)θ

Fig. 2 — The ranges of values of the input variables in the training and testing
databases. The normalized values of the variables were obtained using Equa-
tion 10 and corresponding minimum and maximum values listed in Table 1.

Fig. 1 — Neural network architecture used in this study. The input layer has
17 input variables and the output layer has one of the six output variables, i.e.,
weld pool depth, weld pool width, weld pool length, peak temperature, cool-
ing time from 800° to 500°C, or maximum liquid velocity in the weld pool.
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the hidden layer, and a linear transfer
function is used for the nodes in the out-
put layer. The use of a nonlinear transfer
function in the hidden layer allows the net-
work to learn nonlinear and linear rela-
tionships between input and output vec-
tors (Ref. 37), while the use of a linear
transfer function in the output layer allows
the network to produce values outside the
range of –1 to 1. Thus, the output, xj, of a
node j in the hidden layer is given by

(2)

where ‘a’ is the slope of the sigmoid func-
tion. By varying the parameter ‘a’, sigmoid

functions of differ-
ent slopes can be
obtained (Ref. 48).
An increase in the
value of ‘a’ in-
creases the slope of
the activation func-
tion and vice versa.
A very high value
of the slope makes
the curve close to a
step function while
a low value retards
the convergence
rate. Based on the
findings of previ-
ous works, a value
of 1.5 was used to
achieve rapid con-
vergence (Refs. 49,
50). Furthermore,
the use of the tanh
function in Equa-
tion 2 as the activa-
tion function helps
in keeping the
problem reason-
ably well condi-
tioned. An attrac-
tive feature of the
hyperbolic tangent
function is that its
derivative does not
increase computa-
tional volume sig-
nificantly (Ref. 48).
The output, xj, of a
node j in the output
layer is given by the
following:

xj = vj (3)

The training
of a neural network
implies finding a
set of weights that
minimize error be-
tween the desired
output and the out-

put calculated by the neural network. A
back-propagation algorithm (Ref. 45) is
used for the training of the neural net-
works. This algorithm tries to minimize
the objective function, i.e., the mean
square error (MSE) between the desired
output and the neural network output.
The MSE is defined as (Ref. 45) the
following:

where p is the number of training datasets;
k represents the number of output nodes,

which is one in this work; dpk is the desired
output; and opk is the output produced by
the neural network. The desired outputs
of the neural network such as weld pool
depth, width, and length, cooling rate,
peak temperature, and maximum liquid
velocity are dependent on input welding
conditions, material properties, and the
network parameters such as the weights.

The back-propagation algorithm ad-
justs the weights in the steepest descent di-
rection (negative of the gradient) (Ref.
45). This is the direction in which the error
in the value of the output variable, E, de-
creases most rapidly. For a given set of
input-output training data, the partial de-
rivatives of the error with respect to each
weight, ∂E/∂w, are calculated in two
passes (Ref. 45). The forward pass calcu-
lates the output of each node in the hid-
den layers and the output layer, based on
the inputs from the previous layers, as de-
scribed by Equations 1–3. The backward
pass propagates the derivatives from the
output layer back to the input layer (Ref.
45). The backward pass is well docu-
mented in the literature (Refs. 45, 51) and
is not described here. Once ∂E/∂w are cal-
culated, the weights are changed by an
amount proportional to ∂E/∂w as

where ε is called the learning rate. A large
learning rate enables quick convergence,
but it can also lead to overstepping of the
solution and oscillation of the error (Ref.
24). On the other hand, small learning rate
may prevent oscillation of the error, but it
requires much more time to reach the so-
lution (Ref. 24). Therefore, in the present
study ε was taken as 0.1 during initial iter-
ations, and reduced to 0.01 once the error
became very small. A simple method for
increasing the rate of learning without os-
cillation is to include a momentum term in
Equation 5 as follows (Ref. 45):

where n is the number of iterations, an it-
eration being defined as a single sweep
through all the input-output pairs in the
training dataset, and α is an exponential
decay factor between 0 and 1 that deter-
mines the relative contribution of the cur-
rent gradient, ∂E/∂w, and the earlier gra-
dients,∆w(n–1), to the weight change. The
value of α is set to 0.9 in the present study,
based on guidance from previous research
(Refs. 37, 51).

The training of the neural network was
started with random small weights. It was
observed that after the initial rapid de-
crease in error, further descent became

MSE
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Fig. 3 — Flowchart for training the neural network.
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very sluggish, and the result depended on
the initial random weights, which are com-
mon problems with gradient-descent algo-
rithms (Refs. 46, 52, 53). Furthermore, for
simple two-layer networks (without a hid-
den layer), the error surface is bowl
shaped and using gradient-descent tech-
niques to minimize objective function is
not a problem. However, the addition of a
hidden layer used to solve more difficult
problems like the GTA welding process in-
creases the possibility for complex error
surfaces that contain many minima. The
gradient-based methods, which are used
in the back-propagation algorithm de-
scribed above, can easily get trapped in
such local minima. Stochastic optimiza-
tion techniques are capable of finding the
global minima and avoiding local minima
(Refs. 54–56). Therefore, a genetic algo-
rithm (Refs. 54–56) is used along with the
gradient-descent method to find the

global set of weights in the present work.
The genetic algorithm (GA) used in

the present study is a parent centric re-
combination (PCX) operator-based gen-
eralized generation gap (G3) model (Refs.
54–56). This model was chosen because it
has been shown to have a faster conver-
gence rate on standard test functions as
compared to other evolutionary algo-
rithms and classical optimization algo-
rithms (Ref. 55). Detailed description of
this model is available in the literature
(Refs. 54–59) and is not repeated here. To
start with, many initial sets of randomly
chosen values of weights were created.
Five of these initial sets of weights were
made equal to five different sets of weights
calculated by the gradient-descent algo-
rithm. A systematic global search was next
undertaken to find the most optimum set
of weights that leads to the least mean
square error (MSE), given in Equation 4.

The mean square error depends on the
values of weights:

MSE(w) = MSE(w1,w2,…,wq) (7)

where q is the number of weights in the
network. The GA produced new individu-
als, or sets of weights, with iterations
based on evolutionary principles (Refs. 20,
55, 56). The specific application of G3-
PCX model for obtaining the optimum set
of weights is described in Appendix A.

Numerical Heat and Fluid Flow Model for
Gas Tungsten Arc (GTA) Welding

The data for the training and testing of
the neural network were generated from
an extensively tested three-dimensional
(3D) numerical heat and fluid flow model
for GTA welding (Refs. 1–18). In this
model, the transient nature of the prob-
lem is transformed to steady-state mode
by using a coordinate system moving with
the heat source (Refs. 12, 17). The gov-
erning equations of conservation of mass,
momentum, and energy in three dimen-
sions (3D) are discretized using the power
law scheme (Ref. 60). The computational
domain is divided into small rectangular
control volumes. Discretized equations
for the variables are formulated by inte-
grating the corresponding governing
equations over the control volumes. The
detailed method of discretizing the gov-
erning equations is available in the litera-
ture (Refs. 12, 17). The discretized equa-
tions are solved using the SIMPLE
algorithm (Ref. 60) to obtain temperature
and velocity fields. The calculated tem-
perature and velocity fields provide the
output variables, i.e., weld pool geometry,
peak temperature, cooling time between
800° and 500°C, and maximum liquid ve-
locity in the weld pool.

Fig. 4 — Comparison of mean square error (MSE), defined by Equation 4, for
different number of nodes in the hidden layer. For each output variable the results
are an average of five runs with different sets of initial random weights using the
gradient-descent training method.

Fig. 5 — Mean square error (MSE), defined by Equation 4, vs. number of it-
erations for the gradient-descent training method. For each output variable,
the results are an average of five runs with different sets of initial random
weights.

Table 1 — The Input Variables and Their Ranges of Values Considered in the Training Dataset

Variables Minimum Maximum
value value

Arc current, I (A) 9.00E+01 2.50E+02
Voltage, V (V) 9.60E+00 2.60E+01
Arc efficiency, η 3.50E-01 8.50E-01
Arc radius, r (m) 1.00E-03 2.90E-03
Arc power distribution factor, d 5.00E-01 3.00E+00
Welding speed, U (m/s) 1.00E-03 1.00E-02
Density of liquid, ρ (kg/m3) 6.60E+03 7.80E+03
Effective viscosity of liquid, µ (kg/m-s) 6.00E-02 1.00E-01
Liquidus temperature, Tl (K) 1.730E+03 1.770E+03
Solidus temperature, Ts (K) 1.785E+03 1.845E+03
Enthalpy of solid at melting point, Hs (J/kg) 1.05E+06 1.15E+06
Enthalpy of liquid at melting point, Hl (J/kg) 1.32E+06 1.42E+06
Specific heat of solid, Cps (J/kg-K) 6.27E+02 7.86E+02
Specific heat of liquid, Cpl, (J/kg-K) 7.74E+02 8.99E+02
Thermal conductivity of solid, ks (J/m-s-K) 2.30E+01 3.97E+01
Effective thermal conductivity of liquid, kl (J/m-s-K) 8.36E+01 5.02E+02
Concentration of surface active species, Cs (wt-%) 0.00E+00 3.50E-01
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Calculation Procedure

Neural networks require a large data-
base for training and testing. The number
of training datasets should be more than
the number of weights connecting differ-
ent nodes. For a single hidden layer net-
work, the number of weights, q, is given as:

q = (ni + 1) × nh + (nh + 1) × no (8)

where ni is the number of input variables,
i.e., 17 in the present work, nh is the num-
ber of nodes in the hidden layer, and no is
the number of output variables, i.e., 1. For
a double hidden layer network,

q = (ni + 1) × nh
+ (nh1 + 1) × nh2 + (nh2+1) × no (9)

where nh1 and nh2 are the number of nodes

in hidden layers 1 and 2, respectively.
Since the number of weights increases
with the increase in the number of hidden
layers, an optimal number of hidden lay-
ers are needed.

Number of Hidden Layers in the Network

The number of hidden layers in a
neural network depends on the type of
problem and the relationships between
the input and the output variables repre-
sented through the objective function.
Theoretically, any continuous variation of
output with respect to input can be repre-
sented by a single hidden layer (Refs. 61,
62). Two hidden layers are needed when
the relationship between the input and the
output variables is discontinuous (Refs.
61, 62). The use of more than the optimal
number of hidden layers in the network

may result in undesirable overfitting of the
data (Refs. 48, 61, 62). A single hidden
layer was used since the outputs are con-
tinuous in nature in GTAW.

Database Generation

A database for training of the neural
networks was generated to capture the ef-
fects of all the welding parameters and
material properties. A well-tested numer-
ical heat transfer and fluid flow model for
GTA welding was used to generate the
database where the values of various ther-
mophysical properties were assumed to be
temperature independent. Out of the 17
input variables in GTA welding, the ten
most important variables that affect the
output significantly include current, volt-
age, welding speed, arc radius, arc power
distribution factor, arc efficiency, effective

Fig. 6 — Absolute value of the difference between the following: A — The weld pool width in the training data and that calculated from neural network (NN);
B — the weld pool width in the testing data and that calculated from neural network; C — the peak temperature in the training data and that calculated from
the neural network; and D — the peak temperature in the testing data and that calculated from the neural network. The results are for the five sets of weights
calculated by the gradient-descent (GD) method, and the global set of weights calculated by the hybrid approach.

A B

C D
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thermal conductivity of liquid, effective
viscosity of liquid, thermal conductivity of
solid, and the concentration of sulfur. The
complex interactions between these ten
variables were captured by making 1250
different runs of the three-dimensional
numerical heat and fluid flow model. The
effect of the remaining variables such as
density, specific heat of the solid, specific
heat of the liquid, etc., was captured by
making 500 different runs of the numeri-
cal heat and fluid flow model. The relative
importance of the variables was decided
based on their sensitivity on the weld
geometry. As described above, more runs
of the numerical heat transfer and fluid
flow model were made for the variables
that have a major influence on the weld
geometry. A sufficient number of differ-
ent values of the variables were consid-
ered in order to increase the degrees of
freedom and to adequately capture the ef-
fect of the variables that have a large in-
fluence on the weld geometry and cooling
rate. Out of the 1750 total runs conducted,
1250 datasets were chosen randomly and
included in the training dataset, and the
remaining 500 datasets formed the testing
dataset for the validation of the neural
network. Thus, the combinations of the

values of variables in the testing datasets
were completely different from those in
the training datasets. The 17 input vari-
ables and their ranges of values used for
the generation of datasets are shown in
Table 1. The ranges of values of the input
variables correspond to the GTA welding
of low carbon steel (Refs. 12, 54). Fur-
thermore, Fig. 2 shows that the different
values considered for each variable are
well distributed about the mean value for
the variable, which ensures that the effect
of almost the entire range of values for
each variable can be taken into account in
the databases.

Normalizing Inputs and Outputs

There is significant variation in the
scales of values of the input and output
variables. The vastly different scales of in-
puts and bias values lead to ill condition-
ing of the problem (Refs. 48, 49). While
large inputs cause ill conditioning by lead-
ing to very small weights, large outputs do
so by leading to very large weights (Refs.
48, 49). To eliminate the ill-conditioning
problem, the data were normalized using
the following formula (Ref. 49):

where x is the original value of the variable
and x´ is the normalized value, while xmin
and xmax represent the minimum and max-
imum values of the variable in the entire
dataset. Equation 10 normalizes the data
in the range of –1 to 1. The range of values
of all input and output parameters from –1
to 1 implies that the standard deviation
cannot exceed 1, while its symmetry about
zero means that the mean will typically be
relatively small (Ref. 49).

Selection of Initial Weights

In the back-propagation algorithm, the
magnitude of the error propagated back-
ward through the network is proportional to
the value of the weights. If all the weights
are the same, the back-propagated errors
will be the same, and consequently all of the
weights will be updated by the same amount
(Refs. 48, 49). To avoid this symmetry prob-
lem, the initial weights of the network were
selected randomly. Furthermore, to avoid
the premature saturation of the network,
the initial values of the weights were dis-
tributed inside a small range of values, i.e.,
in the interval [–0.5, 0.5]. When the weights
are small, the units operate in the linear re-
gions of the transfer function and conse-
quently the transfer function does not
saturate.

The calculation starts with the selec-
tion of the number of nodes in the hidden
layer. The total number of weights in the
network depends upon the number of
nodes in the hidden layer. The weights are
then initialized randomly in the interval
[–0.5, 0.5]. In the next step, a back-
propagation algorithm is used to minimize
the error on the training dataset. The op-

′ = ×
−

−







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2 1 (10)min
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Fig. 7 — Comparison of the values of weights for the gradient-descent and hybrid training approaches for the following: A — Weld pool depth; B — maximum
liquid velocity in the weld pool. Cases 01 to 05 are for the five sets of weights obtained from the gradient-descent method when using five different sets of initial
random weights.

Table 2 — Comparison of the Mean Square Error (MSE), Defined in Equation 4, for the
Gradient-Descent Method and the Hybrid Training Approach. The Results for the Gradient-
Descent Method Were Taken after 5000 Iterations

Output variable MSE Gradient MSE Hybrid
Descent Approach

Weld pool depth (mm) 5.37 × 10–4 1.50 × 10–4

Weld pool width (mm) 3.39 × 10–4 6.77 × 10–5

Weld pool length (mm) 2.80 × 10–4 4.00 × 10–5

Peak temperature (K) 1.17 × 10–3 1.87 × 10–4

Cooling time 800° to 500°C (s) 1.50 × 10–4 3.89 × 10–6

Maximum velocity (mm/s) 2.69 × 10–3 9.99 × 10–4

A B
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timized weights calculated by the gradient
descent method are stored as one possible
set of weights. This process is repeated five
times with different randomly selected ini-
tial weights for fixed values of nodes in the
hidden layer. All of these five optimized
sets of weight are provided as input to the
GA. The final aim of the GA is to find the
weights in the network through a system-
atic global search that will give the least
error between the neural network predic-
tion and numerical heat and fluid flow cal-
culations. The flowchart of the calculation
scheme is presented in Fig. 3. The conver-
gence is based on the error in training and
testing data. When the error during testing
starts increasing, the calculation is stopped
to avoid overfitting even if the error with

Table 3 — The Mean Square Error (MSE), Defined in Equation 4, and Mean Error (ME),
Defined in Equation 11, for the Results of the Neural Network for the Weld Pool Geometry, Peak
Temperature, Cooling Time between 800° and 500°C, and Maximum Liquid Velocity in the Weld
Pool. The Results Were Obtained Using the Hybrid Training Approach

Output variable MSE MSI ME ME Typical
Training Testing Training Testing value in

Data Data Data Data the data

Weld pool depth (mm) 1.50 × 10–4 5.00 × 10–4 0.04 0.07 2.3
Weld pool width (mm) 6.77 × 10–5 3.24 × 10–4 0.05 0.09 6.8
Weld pool length (mm) 4.00 × 10–5 1.00 × 10–4 0.05 0.09 8.7
Peak temperature (K) 1.87 × 10–4 6.90 × 10–4 4 8 2237
Cooling time 800° to 500°C (s) 3.89 × 10–6 1.57 × 10–5 0.01 0.01 2.0
Maximum velocity (mm/s) 9.99 × 10–4 3.72 × 10–3 5 10 190

Fig. 8 — Comparison of weld pool dimensions calculated by the respective neural networks and those given in the training and the testing datasets. Top — Depth;
Middle — width; Bottom — length.

A B

C D
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training dataset decreases with further
iterations.

Results and Discussion

Structure Chosen for the Neural
Networks

The selection of suitable network archi-
tecture is important as it affects the net-
work’s convergence as well as the accuracy
of predictions (Ref. 22). The number of
nodes in the hidden layer were varied to get
an optimum number of nodes that resulted
in minimum mean square error (MSE) de-
fined in Equation 4. The average MSE of
five runs made with different initial random
weights is plotted in Fig. 4 for different

number of nodes in the hidden layer. The
results are for all the six neural networks
with different output variables, and the
runs were conducted using the gradient-
descent method. Figure 4 shows that for all
the six neural networks, the average MSE
decreases with increase in the number of
hidden nodes. For the neural networks with
depth, width, length, and cooling time from
800° to 500°C, the MSE becomes almost
constant for more than 14 hidden nodes in
the network. Even for the neural networks
with peak temperature and maximum ve-
locity as the output variables, the decrease
in MSE on increasing the number of hid-
den nodes above 14 is rather insignificant.
Therefore, networks with 14 nodes in the
hidden layer were used in the present study.

Gradient Descent vs. Hybrid Training
Approach

As described in the section on mathe-
matical modeling, the neural network
model developed in the present study uses
a combined gradient descent and genetic
algorithm (hybrid) training approach. The
initial guidance is provided by a gradient-
descent algorithm and then the GA finds
the global minimum of the mean square
error (MSE) to provide a well-trained net-
work. The neural networks were first
trained on the training dataset of 1250
input-output pairs using the gradient-
descent method. Since the output of this

method depends on the initial set of
guessed weights, five sets of initial random

Fig. 9 — Comparison of the following calculated by the respective neural networks and those given in the training and the testing datasets: Top — Peak tem-
perature; Middle — cooling time between 800° and 500°C; Bottom — maximum liquid velocity in the weld pool.
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weights were used. In order to assess the
performance of the gradient-descent
method, the decrease of MSE with itera-
tions is plotted for all the six neural net-
works in Fig. 5. Each plot represents an
average of five runs with different random
initial weights in order to avoid any local
optimal solution. It can be seen that in all
the cases, the error decreases very rapidly
for the first 2000 iterations, but after that,
further decrease is very slow. Since fur-
ther improvement in error was very slow
and insignificant, the training of the net-
work using the gradient-descent method
was stopped after 5000 iterations. The
MSE values for the six neural networks,
after training by the gradient-descent
method for 5000 iterations, have been
listed in Table 2.

Now, to test the performance of the
hybrid approach, the five sets of weights
calculated after 5000 iterations of the
gradient-descent method, were given as
inputs to the genetic algorithm (GA).
Adding these sets of weights to the initial
population of GA ensures the presence of
five sets of near-optimum weights within
the starting population, and helps in find-
ing the global solutions more efficiently.
Two convergence criteria were used. The
first criterion required the training to stop
if the mean square error became less than
1.0 × 10–6, which is a low enough accept-
able error for the problem at hand. The
second criterion was based on the concern
of overfitting of the neural network (Refs.
37, 39, 46–48). During training of the
neural network, the error on the training
data is driven to a very small value, but

when new data are presented to the net-
work, the error is large. This means that
the network has memorized the training
examples, but it has not learned to gener-
alize to new situations (Ref. 37). A com-
mon method of avoiding this problem is
that while training the network, its per-
formance is simultaneously tested on a set
of testing data. The training of the net-
work is stopped as soon as the mean
square error in the testing data starts in-
creasing. This was set as the second con-
vergence criterion in the present study in
order to avoid overfitting of the neural
network. The testing dataset consists of
500 input-output pairs, and the ranges of
values of the input and output parameters
lie within their ranges of values given in
Table 1. The GA found the global set of
weights giving much improved mean
square errors as listed under the hybrid
approach in Table 2. It can be seen that
the MSEs for all the neural networks
using the hybrid approach are much bet-
ter than those obtained using the gradi-
ent-descent method alone.

To further compare the performance
of the gradient-descent and hybrid ap-
proaches, the five sets of weights provided
by the gradient-descent approach and the
global set of weights provided by the hy-
brid approach were used to calculate the
respective output variable values from the
neural network for the training and the
testing datasets. Figure 6A shows the ab-
solute value of the difference between the
training data and the corresponding re-
sults from the neural network, for weld
pool width as the output variable, while

Fig. 6B shows a similar plot for testing
data. Figure 6C, D shows similar plots for
peak temperature as the output variable.
These plots contain results for the five sets
of weights obtained using the gradient-
descent method and the global set of
weights obtained using the hybrid ap-
proach. It can be seen that in all the cases
the weights from the hybrid approach pro-
vide results that fit much better to both
the training and the testing data. The re-
sults obtained by using the weights from
the gradient-descent method have much
more scatter as compared to those ob-
tained from the hybrid approach. Similar
results were obtained for other output
variables as well. Thus, the hybrid ap-
proach provides a well-trained network
with significantly better weights, where
the output from the trained neural net-
work can accurately map the inputs to the
outputs.

The values of the five sets of weights
from the gradient-descent method and
those from the hybrid approach have been
plotted in Fig. 7A and B for output vari-
ables of weld pool depth and maximum
liquid velocity, respectively. It can be seen
that the weights from the gradient-
descent method are mostly confined to a
narrow range of [–1.0, 1.0], which is very
close to their initial range of [–0.5, 0.5],
while the weights from the hybrid ap-
proach are scattered in a much wider area.
For example, the global set of weights for
weld pool depth lie in the range of [–8.0,
6.0] and those for maximum liquid velocity
lie in the range of [–7.0, 4.0]. This means
that in the hybrid approach, the genetic al-

Fig. 10 — Generalized Generation Gap (G3) model using PCX operator. Fig. 11 — Flow chart of the Generalized Generation Gap (G3) model.
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gorithm explored a much wider search area,
irrespective of the initial guessed values,
and was able to find significantly better
weights. Thus, the hybrid approach con-
ducts a more thorough search of the possi-
ble search space and provides a better
trained network.

Evaluating the Predicting Capability of
the Neural Networks

Six neural networks have been devel-
oped, each providing a specific output, i.e.,
depth, width, and length of the weld pool,
peak temperature, cooling time between
800° and 500°C or maximum liquid velocity
in the weld pool. The performance of the
neural networks is illustrated in Figs. 8 and
9, which compare the output parameters
calculated by the model with their corre-
sponding values provided in the training
and the testing datasets. Figures 8A and B
compare the weld pool depth calculated by
the neural network with that provided in the
training and testing datasets, respectively.
All points lie on or very close to the diago-
nal line and the results obtained from the
neural network agree well with the values
calculated using heat and fluid flow model.
The MSE for the training dataset was 1.5 ×
10–4 mm2 and that for the testing dataset
was 5.0 × 10–4 mm2, which was the least
error that could be obtained on the testing
dataset. To further evaluate the error in the
values of depth provided by the neural net-
work model, the absolute value of mean
error, ME, between the target depth, i.e.,
the one given in the training and the testing
datasets, and the depth calculated by the
neural network is calculated as

where i is the index for the input dataset, di
is the desired output, and oi is the output
produced by the neural network. The ME
for depth in the training dataset was 0.04
mm and that in the testing dataset was 0.07
mm, where a typical depth value for GTA
welding of low-carbon steel is 2.3 mm. Thus,
the error in depth is well within the error
limits for the process being considered.

In Fig. 8A, the depth varies from 0.9 to
8.5 mm, depending on the values of the
input process parameters and the material
properties. This shows that the process pa-
rameters and material properties consid-
ered in this study have a significant impact
on the weld pool depth. The fact that the
neural network model could accurately pre-
dict the depth values even for the testing
data indicates that it is capable of accurately
representing the results of the three-dimen-

sional numerical heat and fluid flow model
for GTA welding.

Figure 8C, D shows similar results for
weld pool width, and Fig. 8E, F shows sim-
ilar results for weld pool length. Similarly,
the results for peak temperature are pre-
sented in Fig. 9A, B, those for cooling time
between 800° and 500°C in Fig. 9C, D, and
those for maximum liquid velocity in the
weld pool in Fig. 9E, F. The corresponding
MSEs and MEs are listed in Table 3. The
MEs for the training data for weld pool
width and length, peak temperature, cool-
ing time between 800° and 500°C, and max-
imum liquid velocity in the weld pool are
0.05 mm, 0.05 mm, 4 K, 0.01 s, and 5 mm/s,
respectively. These MEs are quite small
compared to the respective magnitudes of
these output variables, which are also listed
in Table 3. Though the MEs for the testing
data were slightly higher than those for the
training data in all the cases, the difference
was not very significant as can be seen from
Table 3. The low values of ME for the test-
ing data indicate that the neural networks
can accurately predict different features of
weld pool geometry as well as the peak tem-
perature and cooling time, and hence can be
used for simulations with predetermined
good accuracy.

Summary and Conclusions

Six neural networks were developed
for GTA welding of low-carbon steel. Each
of these neural networks takes 17 input
variables, which include welding process
parameters and important material prop-
erties, and provides one output variable.
The output variables include depth, width,
and length of the weld pool, peak temper-
ature, cooling time from 800° to 500°C,
and maximum liquid velocity in the weld
pool. The networks were trained using a
hybrid optimization scheme including the
gradient-descent method and a genetic al-
gorithm. The hybrid approach gave lower
errors than only the gradient-descent
method on both training and testing
datasets, and the results did not depend on
the initial choice of weights. The training
and testing datasets contained results
from a reliable numerical heat and fluid
flow model for GTA welding. The accurate
prediction of these results by the neural net-
works ensured that the output of these net-
works complies with the phenomenological
laws of welding physics.
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Appendix A

Parent Centric Recombination (PCX)
Based Generalized Generation Gap (G3)
Genetic Algorithm (GA)

The genetic algorithm used in this
study to calculate the optimized set of
weights is a parent centric recombination
(PCX) operator-based generalized gener-
ation gap (G3) model (Refs. 55, 56). This
model was chosen because it has been
shown to have a faster convergence rate
on standard test functions as compared to
other evolutionary algorithms. The algo-
rithm for the model is as follows:

1. A population is a collection of many
individuals and each individual represents
a set of randomly chosen weights. A par-
ent refers to an individual in the current
population. The best parent is the individ-
ual that has the best fitness, i.e., gives the
minimum value of the mean square error,
defined by Equation 4, in the entire popu-
lation. The best parent and two other ran-
domly selected parents are chosen from
the population.

2. From the three chosen parents, two
offsprings or new individuals are gener-
ated using a recombination scheme. PCX-
based G3 models are known to converge
rapidly when three parents and two off-
spring are selected (Ref. 56). A recombi-
nation scheme is a process for creating
new individuals from the parents.

3. Two new parents are randomly cho-
sen from the current population.

4. A subpopulation of four individuals
that includes the two randomly chosen
parents in step 3 and two new offspring
generated in step 2 is formed.

5. The two best solutions, i.e., the solu-
tions having the least values of the mean
square error, are chosen from the subpop-
ulation of four members created in step 4.
These two individuals replace the two par-
ents randomly chosen in step 3.

6. The calculations are repeated from
step 1 again until convergence is achieved.

The above steps, as applied to this
study, are shown in Fig. 10. The process of
finding the optimum set of weights by min-
imizing the mean square error is illus-
trated in Fig. 11. The recombination
scheme (step 2) used in the present model
is based on the PCX operator. A brief de-
scription of the PCX operator, as applied
to the present problem of optimum set of
weights, is presented below.

The first three parents, i.e.,

are randomly selected from the current pop-
ulation. Here, the subscripts represent the q
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weights of the neural network, while the su-
perscripts denote the parent identification
number. The mean vector or centroid,

of the three chosen parents is computed. To
create an offspring, one of the parents, say

is chosen randomly. The direction vector,

is next calculated from the selected parent
to the mean vector or centroid. Thereafter,
from each of the other two parents, i.e.,

perpendicular distances, Di, to the direction
vector, d(par), are computed and their aver-
age, D, is found. Finally, the offspring, i.e.,

is created as follows:

where h(i) are the orthonormal bases that
span the subspace perpendicular to d(par),
and vξ and vη are randomly calculated
zero-mean normally distributed vari-
ables. The values of the variables that
characterize the offspring,

are calculated next. As an example, only
the calculation of w 1́ and w 2́ will be de-
scribed here:

where,

The expressions for the variables d, a2, and
b2 used in Equations A3.c and A3.d, are as
follows:
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