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Neural network model of heat and fluid flow in
gas metal arc fillet welding based on genetic
algorithm and conjugate gradient optimisation

A. Kumar*1 and T. DebRoy

Although numerical calculations of heat transfer and fluid flow can provide detailed insights into

welding processes and welded materials, these calculations are complex and unsuitable in

situations where rapid calculations are needed. A recourse is to train and validate a neural

network, using results from a well tested heat and fluid flow model to significantly expedite

calculations and ensure that the computed results conform to the basic laws of conservation of

mass, momentum and energy. Seven feedforward neural networks were developed for gas metal

arc (GMA) fillet welding, one each for predicting penetration, leg length, throat, weld pool length,

cooling time between 800uC and 500uC, maximum velocity and peak temperature in the weld

pool. Each model considered 22 inputs that included all the welding variables, such as current,

voltage, welding speed, wire radius, wire feed rate, arc efficiency, arc radius, power distribution,

and material properties such as thermal conductivity, specific heat and temperature coefficient of

surface tension. The weights in the neural network models were calculated using the conjugate

gradient (CG) method and by a hybrid optimisation scheme involving the CG method and a

genetic algorithm (GA). The neural network produced by the hybrid optimisation model produced

better results than the networks based on the CG method with various sets of randomised initial

weights. The CG method alone was unable to find the best optimal weights for achieving low

errors. The hybrid optimisation scheme helped in finding optimal weights through a global search,

as evidenced by good agreement between all the outputs from the neural networks and the

corresponding results from the heat and fluid flow model.

Keywords: Neural network, Gas metal arc welding, Optimisation, Fillet welds

Introduction
Since the geometry, composition and structure of welds
are affected by the welding variables, these variables are
often adjusted by trial and error to achieve defect-free,
structurally sound and reliable welds. However, this
approach is time consuming and expensive, and does not
always provide optimum welds. Attempts have been
made to obtain systematic correlations between welding
variables and weld characteristics by the use of statistical
regression analysis,1 artificial neural networks1–13 and
phenomenological modelling.14–24 In principle, regres-
sion analysis can relate weld pool geometry to welding
variables with the use of a large volume of experimental
data. However, this approach is difficult for gas metal
arc (GMA) fillet welding, due to complex interactions
between various physical processes, where each variable

affects the weld pool dimensions, cooling rate and other
parameters in a complex manner.17–20 In recent years,
numerical models of heat transfer and fluid flow in
fusion welding have provided significant quantitative
insights into both the welding processes and the welded
materials. The computed temperature and velocity
fields, cooling rates, weld pool geometry for various
concentrations of surface active elements, concentra-
tions of oxygen, nitrogen and hydrogen, and formation
of defects, have been studied quantitatively using
numerical models. Although these models are recognised
as powerful tools for research, they are not extensively
used in the welding industry, because the models are
highly complex, require specialised training to develop
and test, and consume a large amount of computer time.

The neural network models are capable of relating
input variables such as welding process parameters and
material properties to weld characteristics such as the
weld geometry1–5 and properties. Previous efforts to
model the GMA fillet welding process using neural
networks were based on training the network with
experimental data. Since the volume of experimental
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data required to train a neural network depends on the
number of input and output variables, most previous
workers considered only few input parameters to keep
the necessary volume of experimental data tractable.1–4

For example, Kim et al.,1 Smartt and Johnson,2 Cook
et al.3 and Li et al.4 developed neural network models
of the GMA welding process in which the effects of pro-
cess parameters such as welding speed, arc voltage and
arc current were considered as inputs. Since the weld
pool geometry depends on other welding variables, as
well as various material properties, the effects of many
of the welding variables and material properties cannot
be determined from the available neural networks.
Furthermore, the output variables used in the previous
neural networks were also limited. For example, the
existing neural network models do not provide any
information about some of the important parameters,
such as the cooling rate and peak temperature. A review
of previous work indicates that what is needed is a
framework for rapid calculation of weld pool geometry,
cooling rate and peak temperature in the weld pool for
GMA welding of various materials.

A neural network trained with the results of a
numerical heat transfer and fluid flow model can
correlate various output variables, such as the weld
pool geometry, cooling rate, liquid velocities and peak
temperatures, with all the major welding variables and
material properties. Furthermore, such correlations
satisfy the phenomenological laws. With the improve-
ments in computational hardware in recent years, a large
volume of training and validation data can be generated
with a well tested numerical heat transfer and fluid flow
model in a realistic time frame. The weights in the neural
network were calculated using a hybrid optimisation
scheme involving the conjugate gradient (CG) method
and a genetic algorithm (GA). The neural network
produced by the hybrid optimisation model produced
better results than the networks based on the CG
method. This paper seeks to document the problems,
issues and lessons learnt in the development of a neural
network model from the results of a heat transfer and
fluid flow model that considers all the major input
variables, including all important process variables and
material properties, and correlates them with output
variables.

Mathematical model

Heat transfer and fluid flow model of GMA fillet
welding to generate database
The datasets for training, validation and testing of the
neural network were generated by using a well tested
heat transfer and fluid flow model that solves the
equations of conservation of mass, momentum and
energy in three dimensions. Because of the complexity of
GMA fillet welding, the following simplifying assump-
tions15,16,18,20 are made to make the computational work
tractable:

(i) the thermophysical properties needed for calcu-
lations such as the thermal conductivity and
specific heat of the workpiece material are
assumed to be constant for simplicity

(ii) the liquid metal flow is assumed to be
incompressible and Newtonian. The effect of
turbulent flow in the weld pool is taken into

account through the use of the enhanced
thermal conductivity and viscosity of the liquid
metal15,16

(iii) the heat transported from the filler metal
droplets is taken into account using a time
averaged volumetric heat source14,15,17,25

(iv) both the heat and current flux from the arc are
assumed to have a Gaussian distribution at the
weld top surface.14,21 For example, heat flux is
defined by

qr~
gIV

ps2j
exp {

dr2

r20

 !

where qr is the heat flux, g is the arc efficiency, I
is the current, V is the voltage, d is the arc
distribution factor, r is the radial distance from
the arc location, and r0 is the radius of the arc.
The distributions of heat flux and current
density are assumed to be unaffected by the
deformation of the weld pool top surface.14,15

The thermofluid model takes into account the complex
fillet joint shape, the deformation of the weld pool top
surface, heat transfer by the hot metal droplets and the
addition of the filler metal from the consumable
electrode.15,16,18,24 The calculations require the use of a
deformable, curvilinear grid system for accurate calcula-
tion of heat transfer and fluid flow. Therefore, the
governing equations are transformed from the Cartesian
to the curvilinear coordinate system.14,15 The discretised
equations for enthalpy, three components of velocity
and pressure are formulated by integrating the corre-
sponding governing equations over all the interior
control volumes in the computational domain.26 These
equations were solved to obtain the temperature and
velocity fields using the modified SIMPLE algorithm.26

Subsequently, the free surface profile of the weld pool
was calculated based on the temperature field obtained
in the previous step. After the solution of the free surface
profile, the z locations of grids were adjusted to fit the
surface profile, and the temperature and velocity fields
were then recalculated in the fitted grid system. The
calculation procedure was repeated until temperature
and velocity fields converged. More details of the
numerical model of heat transfer and fluid flow of
GMA fillet welding are available in the literature14–20,24

and are not repeated here. The original fillet geometry
is transformed into a rectangular domain of length
450 mm, width 108 mm and depth 18 mm by using an
appropriate coordinate transformation.14,15 A 726666
47 grid system with finer grids near the heat source was
used for maximum resolution of variables.

Neural network model
All the 22 input variables and their range of values used
to develop the neural network are listed in Table 1.
While most of these variables are easily understood, the
following comments may be of interest. The input
variables such as arc efficiency, arc power distribution
factor and arc radius determine how heat is absorbed at
various locations from the arc.21 The droplet effi-
ciency15–18 is defined as the ratio of the total sensible
heat input due to metal droplets Qt and the total heat
input IV, i.e. gd5Qt/(IV), where I is arc current (A)
and V is voltage (V). Since temperature independent
thermophysical properties of the solid alloy are used in
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the model, a question arises as to how to select their
values. Since the heat flow in the solid region near the
weld pool affects both the size and shape of the weld
pool as well as the temperature field in the entire
workpiece, it is appropriate to use thermophysical
properties at a temperature closer to the melting point
than to the ambient temperature. The effective thermal
conductivity and viscosity are used to represent
enhanced heat and momentum transfer within the weld
pool because of the fluctuating components of velocities
in a strong recirculating flow confined in a small weld
pool. These variables represent system properties, and
their values, determined by reverse modelling, are
available in the literature17–20 for GMA fillet welding
for various heat input values. The effects of surface
active elements have not been rigorously studied in the
development of the neural network, to simplify calcula-
tions. Therefore, the results are valid for low concentra-
tions of surface active elements.

All the important output variables from the model
included in the neural network are listed in Table 2. The
three output variables describing the weld cross-section
are penetration, leg length and throat. These are shown
in Fig. 1. In addition, the length of the weld pool is
considered as an output of the neural network, as shown
in Table 2. Other outputs of the neural network model
include the peak temperature in the weld pool,
maximum velocity in the weld pool and cooling time
between 800uC and 500uC. The cooling time was
calculated on the workpiece surface along the welding
direction.

Figure 2 shows the structure of each neural network,
which contains an input layer, a hidden layer and an
output layer. The input layer comprises all of the 22
input variables, which are connected to neurones in the
hidden layer through the weights assigned for each link.
The number of neurones in the hidden layer is found by
optimising the network. In mathematical terms, we
describe the output from a neurone y at each node
(represented by circles in Fig. 2) as follows27–29

y~f
XN
i~0

wixi

 !
(1)

Table 2 Root mean square error for different output variables

Output variable Training data Validation data Testing data

Leg length, mm 0.01 0.02 0.14
Actual throat, mm 0.02 0.18 0.29
Penetration, mm 0.02 0.08 0.11
Length of the weld pool, mm 0.16 0.18 0.19
Peak temperature in the weld pool, K 4.27 4.58 4.82
Cooling time between 800uC and 500uC, s 0.04 0.06 0.06
Maximum velocity in the weld pool, mm s21 2.27 2.53 1.85

1 During the GMA fillet welding process, the weld geo-

metry is commonly specified by three quantities that

affect the joint properties: penetration, throat and leg

length

Table 1 The range of input variables used in the generation of training, validation and testing datasets

Variables Minimum Maximum Mean

Arc current, A 200.0 410.0 326.3
Arc voltage, V 25.0 42.0 33.8
Welding speed, mm s21 4.2 8.5 6.4
Wire feed rate, mm s21 120.0 290.0 199.6
Arc efficiency 0.4 0.7 0.5
Arc radius, mm 4.0 6.5 5.1
Arc distribution factor 0.5 3 1.4
Droplet efficiency 0.1 0.2 0.13
Contact tube to workpiece distance, mm 17.5 30.0 23.4
Wire radius, mm 0.5 0.9 0.7
Effective thermal conductivity, J m21 s21 K21 83.6 543.4 298.5
Effective viscosity, kg m21 s21 2.061022 21.061022 7.961022

Density, kg m23 7000.0 8500.0 7742.1
Solidus temperature, K 1690.0 1790.0 1741.7
Liquidus temperature, K 1745.0 1815.0 1784.6
Enthalpy of solid at melting point, kJ kg21 731.5 1149.5 1002.4
Enthalpy of liquid at melting point, kJ kg21 1045.0 1463.0 1280.2
Specific heat of solid, J kg21 K21 543.4 794.2 677.0
Specific heat of liquid, J kg21 K21 689.7 919.6 789.7
Thermal conductivity of solid, J m21 s21 K21 14.6 40.5 26.9
Coefficient of thermal expansion, 1/K 0.0 1.761025 9.161026

dc/dT of alloy without any surface active element, N m21 K21 25.561024 22.561024 24.261024
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where x1, x2, x3, …, xN are the input signals to the
neurone and w1, w2, w3, …,wN are the synaptic weights
that embody the non-linear relationships between
the input and the output variables. The combination
of a fixed input x051 and an extra input weight w0

accounts for the bias input. The activation function,
denoted by f, captures the non-linear interactions of
various welding variables such as the arc current,
voltage, wire feed rate, welding speed and material
properties such as weld geometry, cooling rate and peak
temperature in the weld pool during GMA fillet welding.
The following hyperbolic tangent function (which is a
symmetrical sigmoid function) is used as the activation
function

y~tanh a
XN
i~0

wixi

 !
(2)

where a is the slope parameter of the sigmoid function.
By varying the parameter a, we can obtain sigmoid
functions of different slopes.27–29 An increase in the
value of a increases the slope of the activation function
and vice versa. A very high value of the slope makes the
curve close to a step function, while a low value retards
the convergence rate. Based on the findings of previous
studies, a value of 1.5 was used to achieve rapid
convergence.29,30 Furthermore, the use of the tanh
function in equation (2) as the activation function helps
in keeping the problem reasonably well conditioned. An
attractive feature of the hyperbolic tangent function is
that its derivative, given by f9512f2, does not increase
computational volume significantly.27–29

To find the weights W, a modified back propagation
algorithm31 is used for the training of these neural
networks.27–29 The algorithm tries to minimise the

objective function, i.e. the least square error between
the predicted and the target outputs, and is given by

E~
1

2

X
p

d (p)
o �y(p)o

� �2
(3)

where p represents the number of training datasets and o
represents the number of output nodes, which is 1 in
this work. The desired outputs of the network, such as
weld penetration, leg length, throat, cooling rate and
peak temperature, are dependent on input welding
conditions, material properties and network parameters
such as the weights. The working procedure of the back
propagation algorithm is explained in Appendix A. The
basic or the original back propagation algorithm adjusts
the weights in the steepest descent direction (negative of
the gradient).27–29,31 This is the direction in which the
error decreases most rapidly. Since this algorithm
requires a learning rate parameter to determine the
extent to which the weights change in an iteration, i.e.
the step sizes, its performance depends on the choice of
the value of the learning rate.27–29,31 A slight modifica-
tion of the back propagation algorithm includes a
momentum term. The momentum term ensures that the
previous changes in the weights are considered in
determining the current direction of changes of weights.
Although there is some guidance for the selection of
these parameters, they are more oriented towards
specific problems such as pattern recognition, and their
performance varies with the type of problem.27–29,31

Owing to difficulty in the selection of the learning rate
parameter and momentum term, the original back
propagation algorithm was modified by replacing the
steepest gradient method with the CG method for
optimising the weights.31

2 Architecture of the neural network model used in this work. The input layer comprises 22 variables, which are con-

nected to a hidden layer. The output of the network is either penetration, leg length, throat, weld pool length, cooling

time between 800uC and 500uC, maximum velocity or peak temperature in the weld pool
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Modified back propagation algorithm
In the CG method,17,18,20,27,31 the weights are updated
after each iteration, based on the error calculated
using equation (3) for the entire training dataset. For
minimising the objective function, the method requires
calculation of the step size or change in weights and the
search direction. The step size is calculated at each
iteration by using Brent’s algorithm,27–29,31 whereas
the search direction is calculated by conjugating the
previous direction with the current gradient of the
objective function. Brent’s iterative line search algo-
rithm19,24 utilises the parabolic interpolation and
Golden section search method27–29,31 to locate the line
minima. At the first iteration, since there is no previous
direction, the search is performed in the direction of
the steepest descent. The directions of search at
subsequent iterations are calculated by conjugating the
previous direction with the current gradient. These
conjugate directions are actually calculated on the
assumption that the error surface is quadratic.27–29

However, if the algorithm discovers that the current
line search direction is not downhill, it simply calculates
the line of steepest descent and restarts the search in
that direction. Once a point close to a minimum is
found, the quadratic assumption holds true and the
minimum can be located very quickly using the Golden
section search method.27–29,31 The steps involved in
the calculation are as follows.22,23,28,31 A line search
is performed to determine the optimal distance to
move along the current search direction. If we let pk
denote the direction vector at iteration k of the
algorithm, then the weights are updated using the
following rule27–29,31

Wkz1~WkzDWk~Wk�gk
LE
LW

� �
0

~Wkzgkpk (4)

where gk is the learning rate or search step size
calculated at each iteration by using Brent’s method.32,33

For the first iteration, the initial direction p0 is the same
as the steepest descent direction (negative of the
gradient)

p0~� g0~� LE
LW

� �
0

(5)

where g is the gradient of error with respect to the weight
of the link connecting any two consecutive layers. Then
the next search direction is determined so that it is
conjugate to previous search directions. The general
procedure for determining the new search direction is to
combine the new steepest descent direction with the
previous search direction22,23

pk~� gkzbkpk�1 (6)

The various versions of CG are distinguished by the
manner in which the constant bk is computed. For the
Polak–Ribiére update, the constant bk is computed
from17,18,20,22,23,32 the following equation

bk~
gk�gk�1ð ÞTgk
gTk�1gk�1

(7)

where T refers to transposition of the matrix, i.e. rows
changed to columns. This is the product of the previous
change in the gradient, with the current gradient divided
by the norm squared of the previous gradient. The

gradient between the hidden node h and the output node
o is given by27–29,31

g~goh~
LE
Lwoh

~�
X
p

d(p)o y
(p)
h (8)

d(p)o ~ d(p)
o �y(p)o � f 0 x(p)o

� �
(9)

�
where y

(p)
h and y(p)o represent the output at hidden and

output nodes, respectively, and x(p)o is the input. For the
input-to-hidden connections, the gradient between
hidden node h and input node i is given by27–29,31

ghi~
LE
Lwhi

~�
X
p

d(p)h y
(p)
i (10)

d
(p)
h ~f 0½x(p)h �

X
o

d(p)o woh (11)

The value of output nodes o is 1 in equations (8), (9) and
(11), since only one output is produced by each of the
neural networks. In the gradient descent algorithms,
calculations are started at some point on the error
function defined over the weights, and an attempt is
made to move to the global minimum of the function.
The gradient based methods can easily get trapped in
local minima. Stochastic optimisation techniques are
capable of finding the global minima and avoiding local
minima.34 Therefore, a genetic algorithm (GA)34 is used
along with the CG method to find the optimal global
weights in the present work. A parent centric recombi-
nation (PCX) operator based generalised generation gap
(G3) GA model24,35–38 was used in the present study.
The PCX operator is a steady state, elite preserving,
scalable and computationally fast population alteration
model.35 This model was chosen because it has been
shown to have a higher convergence rate on standard
test functions as compared to other evolutionary
algorithms and classic optimisation algorithms, includ-
ing other real parameter GAs with the unimodal normal
distribution crossover (UNDX) and the simplex cross-
over (SPX) operators, the correlated self-adaptive
evolution strategy, the covariance matrix adaptation
evolution strategy (CMA-ES), the differential evolution
technique, and the quasi-Newton method.35 Detailed
description of this model is available in the litera-
ture24,35–38 and is not included here. The various
terms used to describe GA are explained in Table 3.
Specific application of GA for determination of the
optimised weights of the neural network is given in
Appendix B.

Calculation procedure

Number of hidden layers in the network
A large database is required for training, validation and
testing of the neural network. The number of training
datasets should be more than the number of weights
connecting different nodes. The number of hidden layers
in a neural network depends on the type of the problem
and the relationships between the input and the output
variables. Theoretically, any continuous variation of
output with respect to input can be represented by a
single hidden layer.39,40 Two hidden layers are needed
when the relationships between the input and the output
variables are discontinuous.39,40 The use of more than
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the optimal number of hidden layers in the network may
result in undesirable overfitting of the data.27–30,39,40 A
single hidden layer was used, since the outputs are
continuous in nature in GMA fillet welding. For a single
hidden layer network, the number of weights is given by
the following

Number of weights in the network

~(niz1)nhz(nhz1)no (12)

where ni is the number of input variables, i.e. 22 in the
present work, nh is the number of nodes in the hidden
layer, and no is the number of output variables, i.e. 1.
Since the number of weights increases with the increase
in the number of nodes, an optimal number of nodes is
required.

Database generation based on design of
experiments
A database for training of the neural networks was
generated on the basis of the design of experiments to
capture the effects of all the welding parameters and
material properties.41 The original L81 (340) orthogonal
array contains 81 rows and 40 columns of variables,
each having three levels of values for capturing the
interactions among all 40 variables.41 However, in the
case of GMA fillet welding, we have 22 input variables.
In the L81 (3

40) array, only 22 columns are used and the
remaining 18 remain vacant. Since only three levels of
weld process parameters are not capable of capturing
the complex interactions among variables, the array is
modified to L81 (9

66316) based on linear graph theory,41

as explained in Appendix C. In the modified array, the
six most important variables, current, voltage, welding
speed, wire feed rate, effective thermal conductivity and
effective viscosity, are assigned nine levels, and the
remaining 16 variables are assigned three values each.
The rest of the variables, such as the efficiency, arc
radius, arc power distribution factor, contact tube to
workpiece distance (CTWD) and material properties,
such as density, specific heat of the solid, specific heat of
the liquid and latent heat, are kept at three levels. This
procedure increases the degrees of freedom and helps to
capture the effects of the variables, which have a large
influence on the weld geometry and cooling rate. Two
L81 (966316) arrays for each of the Fe 1005, Fe 1045
and A36 steels were used. For each steel, we used two
different sets of nine levels of values of current, voltage,
welding speed, wire feed rate, effective thermal con-
ductivity and effective viscosity to capture the inter-
actions. Similarly, material properties and other
parameters such as arc efficiency, arc radius, arc power

distribution factor and CTWD are different in each
array. Therefore, we have 18 levels of all the input
variables in the form of six L81 (9

66316) arrays, or 486
datasets for training. For validation and testing of the
neural network, an additional 50 and 25 different
datasets were generated using three-dimensional heat
transfer and a fluid flow model. These datasets for
validation and testing were generated randomly by
selecting the values of variables that are different from
the training dataset. The ranges of all the 22 input
variables used for the generation of datasets are shown
in Table 1. The different levels or values of the variables
are decided based on their sensitivity to weld geometry.
In the database, variables such as arc current, arc
voltage, welding speed, wire feed rate, effective thermal
conductivity and effective viscosity, which have a major
influence on weld geometry, are taken at many levels
compared to the other remaining variables, as shown in
Fig. 3. The material properties in the database were
selected around their corresponding values for Fe 1005
steel, Fe 1045 steel and A36 steel.

Normalising inputs and outputs
The values of the input and output variables vary
significantly. The vastly different scales of inputs and
bias values lead to ill-conditioning of the problem.27–29

Whereas large inputs cause ill-conditioning by leading to
very small weights, large outputs do so by leading to
very large weights.27–29 To eliminate the ill-conditioning
problem, the data were normalised using the following
formula29

x0~2
x� xmin

xmax�xmin

� �
�1 (13)

where x is the original value of the variable, x9 is the
normalised value, and xmin and xmax represent the
minimum and maximum values of the variable in
the whole dataset. Equation (13) normalises the data
in the range21 to 1. The range of values of all input and
output parameters from 21 to z1 implies that the
standard deviation cannot exceed 1, and its symmetry
about zero means that the mean will typically be
relatively small. Furthermore, its maximum derivative
is also 1.5, so that back propagated errors will be neither
magnified nor attenuated more than necessary.29

Selection of initial weights
In the back propagation algorithm, the magnitude of the
error propagated backwards through the network is
proportional to the value of the weights. If all the
weights are the same, the back propagated errors will be

Table 3 Terminology used in genetic algorithm

Biological terms
Equivalent neural network variables and representation
in genetic algorithm

Genes: units containing hereditary information In the form of weights of the network variables
w1, w2, …, wn, e.g. w1520.10; w250.17; wn50.26

Chromosome/individual: a number of genes
folded together

A set of values of weights taken together,
i.e. (20.10, 0.17, …, 0.26)

Population: collection of many chromosomes/individuals Collection of multiple sets of weights:
(20.10, 0.17, …, 0.26), (0.15, 0.27, …, 0.24), (0.33, 20.14, …, 0.43)

Parents: chromosomes/individuals participating in
creating new individuals (or offspring)

Parents, e.g. (20.10, 0.17, …, 0.26), (0.15, 0.27, …, 0.24)

Fitness value: value of fitness function determines if a
chromosome/individual survives or dies

Objective function or fitness function:
calculated for each set of input variables using equation (3)
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the same, and consequently all of the weights will be
updated by the same amount.27–29 To avoid this sym-
metry problem, the initial weights of the network were
selected randomly. Furthermore, to avoid the premature
saturation of the network, the initial values of the
weights were distributed inside a small range of values,
i.e. in the interval 20.5 to 0.5. When the weights are
small, the neurones operate in the linear regions of the
activation function, and consequently the activation
function does not saturate.

The calculation starts with the selection of the number
of nodes in the hidden layer. The total number of
weights in the network is calculated on the basis of the
number of nodes in the hidden layer. The weights are
then initialised randomly in the interval 20.5 to 0.5, as
described in the previous section. In the next step, a
modified back propagation algorithm is used to mini-
mise the error on the training dataset. The weights
calculated by the CG method are stored as one possible
set of weights. This process is repeated 10 times with
different randomly selected initial weights for fixed
values of nodes in the hidden layer. All of these 10 sets of
weights are provided as input to the GA. The final aim
of the GA is to find the weights in the network through a
systematic global search that will give the least error
between the neural network prediction and heat transfer
and fluid flow calculations. The flowchart of the
calculation scheme is presented in Fig. 4. The con-
vergence is based on the error in training and valida-
tion data. When the error during validation starts to

increase, the calculation is stopped to avoid overfitting,
even if the error in the training dataset decreases with
iteration.

Results and discussion
The number of nodes in the hidden layer was varied to
get an optimum number of nodes that resulted in a
minimum mean square error (MSE), as shown in Fig. 5.
The MSE is defined as follows

MSE~
2:E

p
~

1

p

X
p

d(p)
o �y(p)o

� �2
(14)

where E is the objective function represented by
equation (3). Figure 5a shows that log(MSE) decreases
almost linearly with increase in the number of hidden
nodes. The results are shown for penetration as the
output variable. Other output variables also showed the
same trend. These runs were conducted using the CG
method with 10 different randomly selected initial sets of
weights in the neural network to avoid any local optimal
solution. Figure 5b shows a similar trend for the
variation in log(MSE) for leg length. The log(MSE)
for penetration and leg length becomes almost constant
for more than 19 hidden nodes in the network. Figure 6
shows that most of the runs for 19 hidden nodes gave
very small values of error within 15 000 iterations.
However, the convergence rate depended on the choice
of initial set of weights. This is the main difficulty in
using the CG method alone to find the optimal weights.

3 Range of input variables in the database used for training, validation and testing of the network. The normalised

value of the variables was obtained using equation (13) and corresponding minimum and maximum values listed in

Table 1. Various combinations of these 22 input variables were generated using the modified L81 (966316) array in

the database
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In order to solve this problem and obtain globally
optimised weights, the weights obtained by using the CG
method for 10 different runs were included in the input
to a GA based optimisation model. Since the GA
requires a population of at least 100 individuals (or
different sets of weights)24,34,35 to start the calculations,

5 a Variation of log(MSE) for penetration with number of

hidden nodes for training data by using the CG optimi-

sation method after 50 000 iterations. Dots represent

log(MSE) obtained in 10 different runs, which were

taken to examine the effect of initial weights on the

final converged solution. The box whisker plot shows

the variation and the mean of the log(MSE) for differ-

ent numbers of hidden nodes. Seventy-five percent of

the data are inside the shaded box. b Variation of

log(MSE) for leg length with number of hidden nodes

for training data by using the CG optimisation method

6 Variation of log(MSE) for penetration training data with

number of iterations for 19 hidden nodes by using the

CG optimisation method

4 Flowchart of the modified back propagation algorithm

using the hybrid optimisation model after coupling of

the generalised generation gap (G3) genetic algorithm

with the conjugate gradient method
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the rest of the 90 sets of weights were generated
randomly in the interval 20.5 to 0.5.

Figure 7a shows the log(MSE) for penetration with
the best optimised set of weights for various numbers of
hidden nodes with the hybrid optimisation scheme. For
the first 19 hidden nodes, the error decreased continu-
ously with the increase in number of nodes, and then
started to increase slightly with the increase in nodes.
The lower value of MSE may also be due to overfitting
of the network. The performance of the network was
tested using the validation and testing datasets. The
network was trained using only the training data. The
validation data were randomly generated independently
of the training data. During training, if the network
learns the effects of input variables on the output, the
MSE on the validation set improves with the iterations.
However, if the network minimises the MSE on the
training data by overfitting, the MSE on the validation
dataset will increase. This behaviour indicates that the
interactions between different input variables of the
training dataset are accurately modelled for the training
data but not for all possible values of input variables.

This behaviour also means that the performance of the
network may vary significantly for training, validation
and testing datasets. To avoid overtraining (or over-
fitting), the training was stopped after some iterations
when the performance of the network for the validation
data was optimal. The testing data were used to check
the overall performance of the network.

Figure 7a shows that 19 hidden nodes provide
the lowest value of log(MSE) for penetration for the
training, validation and testing data. Similarly, the
minimum value of log(MSE) for leg length was found
for 19 hidden nodes, as shown in Fig. 7b. Since a neural
network with 19 hidden nodes showed low errors for all
other output variables, 19 hidden nodes were selected
for all the variables for simplicity. Figure 8 shows the
variation of log(MSE) in penetration and leg length with
iterations using the hybrid method for 19 nodes in the
hidden layer. Initially, the error for both training and
validation data decreases with iterations. However, once
the network gets the optimal weights, the error becomes
almost constant. The calculation was stopped when the
error for validation data started to increase with change
in weights or iterations. Furthermore, the number of
iterations depended on the output variables and was not
the same for all variables. For example, for leg length
and penetration, the calculations were stopped after
42 000 and 48 000 iterations, respectively, based on the
results in Fig. 8. Table 2 shows the root mean square
(rms) error for all the output variables. The rms errors in
the training data for penetration, leg length and peak
temperature in the weld pool were 0.02 mm, 0.01 mm
and 4.27 K, respectively. These rms errors were quite
small in comparison to the magnitude of these output
variables. The rms errors in training data for other
outputs were also very small. However, the rms errors
were higher for both the validation and testing data.
Leg length showed a good match for all three datasets.
This is because leg length depends mainly on the heat
input and is not significantly influenced by the impinge-
ment of droplets.17–19 Furthermore, the rms error for

8 Variation of averaged log(MSE) in penetration and leg

length for all the 100 individual members in the popu-

lation by using the hybrid optimisation method for 19

nodes in the hidden layer. The calculation was

stopped when the error on the validation data started

to increase

7 Variation of log(MSE) in a penetration and b leg length

for training, validation and testing data by using the

hybrid optimisation scheme after 50 000 iterations; the

19 nodes in the hidden layer provide less error on all

three datasets
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penetration was large because its calculation involves
complex interactions between various welding process
parameters such as arc current, welding speed and wire
feed rate. The rms error in testing data was generally
higher because the testing data were selected near the
extreme range of input variables, with the exception of
maximum velocity, for which the errors in the testing
data are smaller. To further check the accuracy of the
result predicted by the neural network, the relative
errors were calculated as follows

(Relative % error)i~100|
d i�yi
d i

� �
(15)

where di is the desired value of the penetration for the ith
data point, and yi is the calculated value of the
penetration by the neural network for the same dataset.
The results are presented as typical frequency v. relative
percentage error for penetration in Fig. 9. This error has
a classic Gaussian distribution, with the centre around
zero. Furthermore, more than 90% of the data has an
error of less than 0.8% in the training dataset. This low
percentage error indicates the accuracy of the neural
network.

Various runs were conducted using the hybrid
optimisation method with different randomly selected
initial sets of weights in the population to obtain the
optimised values of all weights. The hybrid method gave
either a smaller or the same error as the CG method.
The computations took approximately 6 h for 19 hidden
nodes on a 3.06 GHz Intel P4 CPU with 512 Mb
PC2700 DDR-SDRAM memory. Figure 10 compares
the relative percentage error for training, validation and
testing data for different best sets of optimal weights
obtained using the CG method alone and the hybrid
method involving CG and GA. The results show that the
best set of weights obtained using the hybrid method
provides less error than the best sets obtained using the
CG method. Furthermore, the relative percentage error
with the CG method varied significantly with the initial
values of the weights. As a result, the CG method alone
is not capable of finding the best optimal network. The
relative percentage errors in training data with the CG

method in runs 4, 6 and 8 were low. However, all of
these runs resulted in a large relative percentage error in
validation and testing data (Fig. 10b and c). Use of the
CG method to determine the weights produced sub-
optimal solutions. With use of the optimal weights

9 Frequency plot showing number of training datasets

of penetration lying in different ranges of relative per-

centage error

10 Comparison of relative percentage error in penetra-

tion for a training data, b validation data, and c test-

ing data, calculated by taking 10 different runs of the

CG method alone in the neural network and the

hybrid optimisation method. These box whisker plots

show that the hybrid optimisation method always pro-

duced less error than the CG method
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produced by the hybrid method, the average relative
percentage errors in training data, validation data and
testing data were 0.5%, 2.4% and 3.8%, respectively, for
the predicted value of the penetration. Table 4 shows
that the average relative percentage errors in training
data for other output variables were less than 0.5 %,
except for maximum velocity, which had a maximum
error of 0.7%.

Computed values of penetration, actual throat, leg
length, length of weld pool, peak temperature, cooling
time and maximum velocity in the weld pool obtained
from the neural network model were compared with
their corresponding values obtained from the heat
transfer and fluid flow model to examine the accuracy
of the neural network. Figure 11 shows all the output
data obtained using different sets of welding variables
used during the training, validation and testing of the
network. All the neural networks of GMA fillet weld
comprised only one hidden layer containing 19 nodes for
each of the seven output variables, i.e. penetration,
actual throat, leg length, length of weld pool, peak

temperature, cooling time and maximum velocity in the
weld pool. Figure 11 shows the predicted values of
outputs from the neural network and the corresponding
values calculated using the heat transfer and fluid flow
model. The plots show that all points lie on or very close
to the diagonal line, and the results obtained from the
neural network agree well with the values calculated
using the heat transfer and fluid flow model. Table 4
shows the average absolute value of the relative
percentage error in all the output variables for training,
validation and testing data. The maximum average value
of the relative percentage error in all outputs was 1.1, 2.4
and 6.0 in the training, validation and testing data,
respectively. The results indicate that the neural network
can be used for simulations with predetermined good
accuracy.

Summary and conclusions
A set of multiple feedforward neural networks was
developed for GMA fillet welding to calculate penetration,

11 Comparison of output variables, i.e. a penetration, b leg length, c throat, d length of weld pool, e peak temperature

in the weld pool, f cooling time between 800uC and 500uC, and g maximum velocity Umax in the weld pool, calculated

from the heat transfer and fluid flow model (x-axis) with corresponding values predicted by the neural network

model of GMA fillet weld. The diagonal lines in each plot show that, ideally, all the points should lie on this line.

The training data, validation data and test data comprise 486, 50 and 25 datasets, respectively
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leg length, throat, weld pool length, cooling time
between 800uC and 500uC, maximum velocity and peak
temperature in the weld pool. These neural network
models used 22 input variables, including welding
process parameters and material properties. A hybrid
optimisation scheme involving a CG and a GA for
finding global optimal weights resulted in low errors in
training, validation and testing data. The results
obtained using the hybrid scheme were better than those
obtained with the CG method alone. For each output
variable, a separate neural network model was devel-
oped. This approach provided superior results and
greater flexibility than one neural network for all the
output variables. These neural network models can
replace the output of complex heat transfer and fluid
flow models with significant computational economy.

Appendix A

Back propagation algorithm

The back propagation training consists of two passes of
computation, a forward pass and a backward pass.27–31

In the forward pass, an input vector (i.e. set of welding
variables) is applied to the sensory nodes of the network.
The signals from the input layer propagate to the units
in the first layer, and each unit produces an output
according to equation (2). The outputs of these units are
propagated to units in subsequent layers, and this
process continues until the signals reach the output
layer, where the actual response of the network (i.e. weld
geometry parameters such as penetration, throat, leg
length and cooling time) to the input vector is obtained.
During the forward pass, the synaptic weights of the
network are fixed. During the backward pass, on the
other hand, the synaptic weights are all adjusted in
accordance with an error signal, which is propagated
backwards through the network. The basic idea is that
the objective function (given by equation (3)), which is a
discrepancy between the desired solution and the
predicted values, has a particular surface over the weight
space, and therefore an iterative process such as the CG
method can be used for its minimisation. In short, the
basic back propagation algorithm is as follows:27–29,31

(i) initialise the input layer

(ii) propagate signals forward

(iii) calculate the error in the output layer

(iv) back propagate the error

(v) update the weights.

Appendix B
PCX based G3 genetic algorithm
The steps involved in calculating the optimal values of
weights are as follows:

(i) a population is a collection of many individuals,
and each individual represents a set of randomly
chosen values of all the weights. A parent refers
to an individual in the current population. The
best parent is the individual that has the best
fitness, i.e. gives the minimum value of the
objective function, defined by equation (3), in
the entire population. The best parent and two
other randomly selected parents are chosen
from the population

(ii) from the three chosen parents, two offspring
or new individuals are generated, using a
recombination scheme. PCX based G3 models
are known to converge rapidly when three
parents and two offspring are selected. A
recombination scheme is a process for creating
new individuals from the parents. The recombi-
nation scheme (step (ii)) used in the present
model is based on the PCX operator24,34–38

(iii) two new parents are randomly chosen from the
current population of the individuals

(iv) a subpopulation of four individuals that
includes the two randomly chosen parents in
step (iii) and two new offspring generated in
step (ii) is formed

(v) the two best solutions, i.e. the solutions having
the least values of the objective function, are
chosen from the subpopulation of four mem-
bers created in step (iv). These two individuals
replace the two parents randomly chosen in step
(iii).

The calculations are repeated from step (i) again until
convergence is achieved, as shown in Fig. 12. The
recombination scheme (step (ii)) used in the present
model is based on the PCX operator. A brief description
of this operator, tailored to the present problem, is as
follows.

The first three parents, i.e. (w0
1,w

0
2,w

0
3, . . . ,w

0
n),

(w1
1,w

1
2,w

1
3, . . . ,w

1
n), (w2

1,w
2
2,w

2
3, . . . ,w

2
n), are randomly

selected from the current population. Here, the sub-
scripts represent the number of weights in the network,
and the superscripts denote the parent identification
number. The mean vector or centroid

g!~
w0
1zw1

1zw2
1

3
,
w0
2zw1

2zw2
2

3
,
w0
3zw1

3zw2
3

3
, � � � ,w

0
nzw1

nzw2
n

3

� �

of the three chosen parents is computed.
To create an offspring, one of the parents,

say x!(p)
~(w0

1,w
0
2,w

0
3, . . .w

0
n), is chosen randomly. The

direction vector d
!(p)

~ x!(p)� g! is next calculated from
the selected parents to the mean vector or centroid.
Thereafter, from each of the other two parents, i.e.

(w1
1,w

1
2,w

1
3, . . .w

1
n), and (w2

1,w
2
2,w

2
3, . . .w

2
n), perpendicular

Table 4 Average absolute value of the relative percentage error for different output variables

Output variable Training data Validation data Testing data

Leg length 0.1 0.1 1.2
Actual throat 0.1 1.0 1.8
Penetration 0.5 2.4 3.8
Length of the weld pool 0.4 0.4 0.5
Peak temperature in the weld pool 0.1 0.2 0.2
Cooling time between 800uC tand 500uC 0.2 0.2 0.7
Maximum velocity in the weld pool 0.7 0.8 0.8
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distances Di to the direction vector d
!(p)

are computed

and their average D is found. Finally, the offspring, i.e.

y!~ w
0

1,w
0

2,w
0

3, . . .w
0

n

� �
, is created as follows24,34–38

y!~ x!(p)
zwf d

!(p)
����

����z Xn
i~1,i=p

wgD h
!(i)

where h
!(i)

are the orthonormal bases that span the

subspace perpendicular to d
!(p)

, and wf and wg are
randomly calculated zero mean normally distributed
variables.

Appendix C

The original L81 (3
40) orthogonal array was modified to

L81 (966316) on the basis of linear graph theory. The
columns in the L81 (340) orthogonal array have two
degrees of freedom.41 Since any variable in the modified
L81 (9

66316) array with nine levels requires eight degrees
of freedom,41 it was necessary to determine the
appropriate four columns from the L81 (3

40) orthogonal
array to which to assign this variable. The procedure for
converting the standard orthogonal array to a multilevel
L81 (9

66316) array includes the following steps.

Step 1: Establish the standard L81 (340) orthogonal
array.

Step 2: Choose a suitable linear graph. For example, a
linear graph joining four columns in the L81 (340)
orthogonal array is shown in Fig. 13a. Based on this
graph, four columns, i.e. columns 6, 18, 28 and 35, were
selected from the standard L81 (3

40) orthogonal array as
shown in Table 5.

Step 3: The linear graph was modified with different
combinations of 1s, 2s and 3s from columns 6, 18 and 28
without having to consider the 35th column, as shown in
Table 6. In Table 6, only a few rows of the array are
shown, to save space.

Step 4: Columns 6, 18, 28 and 35 in the original L81

(340) orthogonal array were replaced with the modified
nine level column.

The process was repeated with the other linear graphs
shown in Fig. 13 to achieve six columns, each with nine
levels of values, in the original orthogonal array. The
first few rows of the resulting multilevel L81 (966316)
array are shown in Table 6.

12 The working principle of the GA based on the generalised generation gap (G3) model and using the PCX operator

13 Linear graphs of L81 (340) orthogonal array for col-

umns a 6, 18, 28 and 35, b 1, 8, 9 and 10, c 2, 14, 17

and 20, d 3, 23, 27 and 31, e 4, 32, 37 and 39, and f

5, 15, 24 and 33, to capture interactions among

variables
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Table 5 Columns of L81 (340) orthogonal array selected
on the basis of the linear graph shown in
Fig. 13a

Column case 6 18 28 Modified 35

1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 2 1 2 4 3
5 2 2 3 5 1
6 2 3 1 6 2
7 3 1 3 7 2
8 3 2 1 8 3
9 3 3 2 9 1

Table 6 First nine rows of the modified multilevel L81

(966316) orthogonal array

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Case 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Case 2 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
Case 3 1 3 3 3 3 3 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3
Case 4 2 1 2 3 4 4 2 2 2 2 1 1 1 1 2 2 2 2 3 3 3 3
Case 5 2 2 3 1 5 5 2 2 2 2 2 2 2 2 3 3 3 3 1 1 1 1
Case 6 2 3 1 2 6 6 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2
Case 7 3 1 3 2 7 7 3 3 3 3 1 1 1 1 3 3 3 3 2 2 2 2
Case 8 3 2 1 3 8 8 3 3 3 3 2 2 2 2 1 1 1 1 3 3 3 3
Case 9 3 3 2 1 9 9 3 3 3 3 3 3 3 3 2 2 2 2 1 1 1 1
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