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ABSTRACT. During conduction mode
laser beam welding, the quality of numer-
ical simulation of heat transfer and fluid
flow in the weld pool is significantly af-
fected by the uncertainty in the values of
absorptivity, effective thermal conductiv-
ity, and effective viscosity that cannot be
easily prescribed from fundamental prin-
ciples. Traditionally, values of these para-
meters are either prescribed based on ex-
perience or adjusted by trial and error.
This paper proposes a deterministic ap-
proach to improve reliability of heat trans-
fer and fluid flow calculations. The ap-
proach involves evaluation of the
optimized values of absorptivity, effective
thermal conductivity, and effective viscos-
ity during conduction mode laser beam
welding from a limited volume of experi-
mental data utilizing an iterative multi-
variable optimization scheme and a nu-
merical heat transfer and fluid flow model.
The optimization technique minimizes the
error between the predicted and the mea-
sured weld dimensions by considering the
sensitivity of weld dimensions with respect
to absorptivity, effective thermal conduc-
tivity, and effective viscosity. Five sets of
measured weld pool dimensions corre-
sponding to five different welding condi-
tions were utilized for the optimization.
However, the procedure could identify the
optimized values of the three uncertain
parameters even with only three sets of
measured weld pool dimensions.

Introduction

Since the temperature and velocity
fields in the weld pool are difficult to mea-
sure experimentally (Refs. 1–7), these im-
portant variables are often estimated by
numerically solving the equations of con-
servation of mass, momentum, and en-
ergy. In recent years, the numerically com-
puted temperature fields have been
utilized to estimate weld pool dimensions
(Refs. 4–7) and understand weld metal
phase composition (Refs. 8–11), grain
structure (Refs. 10, 11), inclusion struc-
ture (Refs. 12–14), and weld metal com-
position changes owing to both vaporiza-
tion of alloying elements (Refs. 15, 16) and
dissolution of gases (Refs. 17, 18). 

The transport phenomena-based nu-
merical models have been continually up-
dated to include more detailed and realis-
tic descriptions of component physical
processes for simple(Refs. 19–22) as well
as for complex weld joint geometries (Ref.
23). In recent years, these models have be-
come relatively easy to use because of ad-
vances in computational hardware and
software. However, these powerful nu-
merical heat transfer and fluid flow mod-
els have not found widespread use in man-

ufacturing or design applications. An im-
portant difficulty is the uncertainty in-
volved in specifying some of the necessary
input variables such as absorptivity, effec-
tive thermal conductivity, and effective
viscosity. Although the time-tested physi-
cal laws such as the equations of conser-
vation of mass, momentum, and energy
provide a reliable phenomenological
framework for calculations, the reliability
of the numerical process models greatly
depends on the accuracy of several input
parameters. 

Many input parameters necessary for
the numerical simulation of heat transfer
and fluid flow in conduction-mode linear
laser beam welding can be readily speci-
fied. These include welding speed, beam
power, beam diameter, and thermophysi-
cal properties of the material being
welded (Refs. 19, 24). However, the values
of absorptivity, effective thermal conduc-
tivity and effective viscosity cannot be
specified from fundamental principles
(Refs. 2, 24–30). For example, absorptivity
depends on the chemical composition of
the substrate, the surface finish, laser
mode, and the prevailing temperature dis-
tribution on the weld pool. As a result, the
absorption coefficient cannot be esti-
mated theoretically with high reliability.
However, an accurate value of absorptiv-
ity is critical for the dependable estimation
of the rate of heat absorption. Similarly,
appropriate values of effective thermal
conductivity and effective viscosity are
needed for the reliable modeling of the
high rates of transport of heat, mass, and
momentum in weld pools with strong fluc-
tuating velocities (Ref. 25). Enhanced val-
ues of liquid thermal conductivity and vis-
cosity have been frequently used to take
into account the effects of the fluctuating
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components of velocities in the weld pool.
In some cases, the two-equation k-e tur-
bulence model has also been used in esti-
mating the effective viscosity and effective
thermal conductivity in the weld pool
(Refs. 26–28). However, the two-equation
k-e turbulence model contains several em-
pirical constants that were originally esti-
mated from parabolic fluid flow data in
large systems. As a result, its applicability
for the recirculating flow in small scale sys-
tems has not been adequately tested.
Since the effective thermal conductivity
and viscosity depend on the turbulent ki-
netic energy and other properties of con-
vection, these parameters are system

properties (Refs. 1, 2, 24–30) and their val-
ues depend on welding conditions, partic-
ularly the heat input. 

The values of effective viscosity and
thermal conductivity have been determined
in this work as a function of heat input from
a limited volume of measured weld pool di-
mensions for conduction mode linear laser
beam welding (Ref. 24) utilizing an opti-
mization algorithm and a numerical heat
transfer and fluid flow model. In contrast
with the effective viscosity or the effective
thermal conductivity, the laser beam ab-
sorption coefficient is a materials property.
Although it varies with temperature, the ex-
tent of the variation is normally much
smaller than those of the effective thermal
conductivity or the effective viscosity. It has
been taken as a constant in this work for
simplicity. The optimization algorithm min-
imizes the error between the predicted and
the experimentally observed penetrations
and the weld widths by considering the sen-
sitivity of the computed weld pool dimen-
sions with respect to the absorptivity, effec-
tive thermal conductivity, and effective
viscosity. The sensitivity terms are calcu-
lated by running the heat transfer and fluid

flow model several times for each measure-
ment considering small changes in the ab-
sorptivity, effective thermal conductivity,
and effective viscosity (Refs. 29, 30). 

The approach determines the values of
absorptivity, effective viscosity and ther-
mal conductivity in an iterative manner
starting from a set of their initial guessed
values. In order to include the effects of
laser power, spot diameter, and welding
speed into one convenient variable during
optimization, a nondimensional heat
input variable, NHI, is defined as 

(1)

where P is the laser power (W), rb the spot
radius (m), v the welding velocity (m◊s–1),
CPS the specific heat of the solid metal
(J.kg–1.K–1), r the density (kg.m–3), L the
latent heat of fusion (J.kg–1) and TL and Ta
are the liquidus and ambient tempera-
tures (K), respectively. In Equation 1, the
numerator represents the available laser
power per unit volume and the denomina-
tor depicts the enthalpy required to heat a
unit volume of metal from ambient tem-
perature to liquidus temperature. The nu-
merator in Equation 1 when multiplied by
the absorptivity, h, provides the absorbed
heat per unit volume. The optimization
approach identifies a single value of ab-
sorptivity and a linear trend of effective
thermal conductivity and effective viscos-
ity with NHI from a limited volume of mea-
surements.

The work presented in this manuscript
represents a significant improvement over
the previous (Refs. 31–35) reverse model-
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Fig. 1 — Influence of k* and m* on (i) p* and (ii) w* with assumed absorptivity (h) of 0.30. Welding parameters: P = 3200 W, v = 3.33 mm/s (NHI = 21.90).

Table 1 — Measured Weld Dimensions, Welding Parameters (Ref. 24), and Heat Input Index

Data Laser Weld Spot NHI Weld Weld
Set Power Velocity Radius Penetration Width
Index (W) (mm.s–1) (mm) (mm) (mm)

1 3500 8.33 1.3 9.67 1.00 4.00
2 5000 8.33 1.3 14.97 1.25 5.25
3 3200 3.33 1.4 21.90 1.75 4.00
4 4800 3.33 1.4 32.90 2.50 6.00
5 5000 3.33 1.3 34.53 2.25 6.75

Table 2 — Chemical Composition (wt-%) of
High-Speed Steel Used for Welding
Experiments(a)

C Cr W Mo V Co Mn

0.92 3.88 6.08 4.9 1.73 0 0.26
Si S Ni P Cu Al Fe
0.23 0.001 0.24 0.024 0.20 0.019 Bal.

(a) for data set index 1, 2, and 5 (Ref. 24).

m m
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ing work in welding reported in the litera-
ture. First, unlike the previous efforts, a
well-tested, three-dimensional numerical
heat transfer and fluid flow model is used
to compute the weld pool geometry. This
is significant, because previous research
has shown the importance of convective
heat transfer in the weld pool. Second, the
model input and the computed weld pool
geometry are related by a rigorous phe-
nomenological framework of the conser-
vation of mass, momentum, and energy
used in the optimization algorithm. The
optimized values of absorptivity, effective
thermal conductivity, and effective viscos-
ity were tested by comparing the com-
puted weld dimensions with the corre-
sponding experimentally determined
values (Ref. 4). 

The effect of volume of data on the
outcome of the optimization was exam-
ined. First, the optimization was done
using five sets of measured weld pool di-
mensions. Second, the optimization was
also carried out with only three measured
data sets of weld pool dimensions. The op-
timized values of the uncertain variables
were almost identical in both cases. 

Heat Transfer and Fluid Flow
Simulation

Table 1 depicts five sets of measure-
ments of weld dimensions and the corre-
sponding welding parameters that have
been used in the present investigation.
The chemical compositions of the steels
used are presented in Tables 2 and 3. The
steel compositions conform to two differ-
ent grades of high-speed steel (Ref. 24).
The thermophysical properties of these

steels are given in Tables 4 and 5. The flow
of liquid metal in the weld pool in a three-
dimensional cartesian coordinate system
is represented by the following momen-
tum conservation equation (Refs. 4, 21,
22, 36):

(2)

where r is the density, t is the time, xi is the
distance along the i = 1, 2 and 3 directions,
uj is the velocity component along the j di-
rection, m is the effective viscosity, and Sj
is the source term for the jth momentum
equation and is given as (Refs. 21, 22)

(3)

where p is the pressure, fL is the liquid
fraction, B is a constant introduced to

avoid division by zero, C (=1.6 ¥  104) is a
constant that takes into account mushy
zone morphology and Sbj represents both
the electromagnetic and buoyancy source
terms. The third term on the right-hand
side (RHS) represents the frictional dissi-
pation in the mushy zone according to the
Carman-Kozeny equation for flow
through a porous media (·Refs. 37, 38).
The pressure field was obtained by solving
the following continuity equation simulta-
neously with the momentum equation

(4)

∂( )
∂

=
ru
x
i

i
0

S
p

x x

u

x

C
f

f B

u U
u

x
Sb

j
j j

j

j

L

L

j
i

i
j

= - ∂
∂

+ ∂
∂

∂

∂

Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

-( )
+

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

- ∂
∂

+

m

r
1

2

3

r r m
∂

∂
+

∂( )
∂

= ∂
∂

∂
∂

Ê

ËÁ
ˆ

¯̃
+

u

t

u u

x x

u

x
Sj i j

i i

j

i
j

Fig. 2 — Influence of k* and m* on O(f) with assumed absorptivity (h) of
0.30. Welding parameters: P = 3200 W, v = 3.33 mm/s (NHI = 21.90).

Fig. 3 —Influence of k* and m* on O(f) with assumed absorptivity (h) of
0.30. Welding parameters: P = 5000 W, v = 8.33 mm/s (NHI = 14.97).

Table 3 — Chemical Composition (wt-%) of
High-Speed Steel Used for Welding
Experiments(a)

C Cr W Mo V Co Mn

0.21 0.21 <0.05 0.05 <0.02 <0.05 1.52
Si S Ni P Cu Al Fe
0.36 0.006 0.14 <0.005 0.14 0.01 Bal.

(a) for data set index 3 and 4 (Ref. 24).

Table 4 — Data Used for Calculations of
Temperature and Velocity Fields(a)

Physical Property Value

Liquidus temperature, TL (K) 1700.0
Solidus temperature, TS (K) 1480.0
Ambient temperature, Ta (K) 293.0
Density of liquid metal, r (kg/m3) 8.1 ¥ 103

Thermal conductivity of solid, 25.08
ks (W m–1 K–1)
Thermal conductivity of liquid, 25.08
kL (W m–1 K–1)
Specific heat of solid, 711.0
CPS (J kg–1 K–1)
Specific heat of liquid, 711.0
CPL (J kg–1 K–1)
Temperature coefficient of –0.5 ¥ 10–3

surface tension, dg/dT (N m–1 K–1)
Coefficient of thermal 1.5 ¥ 10–6

expansion, b (K–1)
Viscosity of molten iron 6.7 ¥ 10–3

at 1823 K, m  fl (kg.m–1s–1)

(a) for data set index 1, 2, and 5 (Ref. 24).
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The total enthalpy H is represented by a
sum of sensible heat h and latent heat con-
tent DH, i.e., H = h + DH where h = ∫Cp
dT, Cp is the specific heat, T is the tem-
perature, DH = fLL, L is the latent heat of
fusion and the liquid fraction fL is assumed
to vary linearly with temperature in the
mushy zone ·(Ref. 4).

(5)

where TL and TS are the liquidus and
solidus temperature, respectively. The ther-
mal energy transport in the weld workpiece
can be expressed by the following modified

energy equation (Refs. 4, 21):

(6)

where k is the thermal conductivity. The
effective thermal conductivity in the liquid
weld pool is also a property of the specific
welding system and not a fundamental
property of the liquid metal. Therefore,

the value of the effective thermal conduc-
tivity is not known. Since the weld is sym-
metrical about the weld centerline only
half of the workpiece is considered. The
weld top surface is assumed to be flat. The
velocity boundary condition is given as
(Ref. 4)

(7)

where u, v, and w are the velocity compo-
nents along the x, y, and z directions, re-
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Fig. 4 — Progress of calculation with four sets of intitial guessed values
using (i) LM method, (ii) CGPR method, and (iii) CGFR method. The ini-
tial guessed values are presented in Table 6.

Fig. 5 — Estimated optimum values of k* and m* for all values of NHI. (Op-
timum value of h = 0.25 for all values of NHI)
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spectively, g is the surface tension, and T
is the temperature. The w velocity is zero,
since the liquid metal is not transported
across the weld pool top surface. The heat
flux at the top surface is given as

(8)

where rb is the laser beam radius, d is the
beam distribution factor, P is the laser
beam power, h is the absorptivity, s is the
Stefan-Boltzmann constant, hc is the heat
transfer coefficient, and Ta is the ambient
temperature. The first term on the RHS is
the heat input from the heat source, de-
fined by a Gaussian heat distribution. The
second and third terms represent the heat
loss by radiation and convection, respec-
tively. The boundary conditions are de-
fined as zero flux across the symmetric
surface (i.e. at y = 0) as (Refs. 4, 21)

(9, 10)

At all other surfaces, temperatures are
taken as ambient temperature and the ve-
locities are set to zero.

Optimization Procedure

Both the Levenberg-Marquardt (LM)
and the conjugate gradient (CG) methods
have been described in the literature
(Refs. 39–42) and only the special features

of their application are described here.
The optimization of the absorptivity, ef-
fective thermal conductivity and effective
viscosity begins with the construction of an
objective function that depicts the differ-
ence between the computed and the mea-
sured values of weld dimensions. 

Levenberg-Marquart (LM) Method

In the LM method, the search for the
optimized values follows the direction of
the objective function gradient with step
size modification by an adjustable damp-
ing parameter after each iteration. In the
CG method, the direction of optimization
is a conjunction of objective function gra-
dient direction and the previous iteration
direction (Refs. 39–42). The objective
function, O(f) is defined as

(11)

where pc and wc are the penetration and
the width of the weld pool computed by
the numerical heat transfer and fluid flow
model, respectively, pobs and wobs are the
corresponding measurements at similar
welding conditions and p* and w* are
nondimensional and indicate the extent of
over or underprediction of penetration
and weld width, respectively. In Equation
11, the subscript m refers to a specific weld
in a series of M number of total welds and

f corresponds to the given set of three un-
known parameters in nondimensional
forms as

(12)
where ks, µfl, keff, µ, and h  are thermal con-
ductivity of solid material at room tem-
perature, viscosity of molten iron at 1823
K, effective thermal conductivity, effective
viscosity of liquid metal, and absorptivity,
respectively. Assuming that O(f) is contin-
uous and has a minimum value, the LM
method tries to obtain the optimum values
of f1, f2, and f3 by minimizing O(f) with re-
spect to them. In other words, Equation 11
is differentiated with respect to f1, f2 and
f3, and each derivative is made equal to
zero as

(13)
where fi represents k*, m* or, h. The vari-
ables pc

m and wc
m in Equation 13 are ob-

tained from the numerical heat transfer
and fluid flow calculations for a certain set
of f1, f2, and f3, i.e. k*, m*, and h. The par-
tial derivatives in Equation 13 are referred
as sensitivity of the computed weld width
and penetration with respect to the un-
known parameters. The values of the sen-
sitivity terms are numerically calculated.
For example, the sensitivity of p* with re-
spect to f1 is calculated as
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(14)
where df1 is very small compared with f1.
The solution of Equation 13 is achieved
when both p* and w* becomes close to one.
In other words, the calculated values of pc

and wc should be close to the correspond-
ing measured values of pobs and wobs for all
M welds. Since f1, f2, and f3 do not explic-
itly appear in Equation 13, this equation
needs to be rearranged so that it can serve
as a basis for an iterative scheme to evalu-
ate the optimum values of f1, f2, and f3.
The procedure is explained in Appendix 1.
The final form of equations to be solved is

(15)
where,

(16)
and {fk+1} refers to the three unknown in-
crements after (k+1)th iteration. Equa-
tion 15 provides the solution of the three
unknown increments, {Dfk} correspond-
ing to the three unknown parameters.

Conjugate Gradient (CG) Method

In the conjugate gradient technique,
the unknown parameters are iteratively
searched in the following sequence (Refs.
40–42):

(17)
where fk+1 represents the values of the
three unknowns after (k+1)th iteration,

indicates the direc-
tions of search at the
end of kth iteration
corresponding to the
unknowns f1, f2, and f3,
and ßk is the size of the
search step. Both dk

and ßk are calculated
for every iteration or
step. The variable ßk

tends to adjust the ex-
tent of increment in
unknown parameters
between successive it-
erations and logically
should assume a value
that will facilitate the
condition of objective
function minimum.
Thus, ßk is calculated
by minimizing the
residual objective
function O(fi)k+1

(18)
The directions of search, dk , dk, and dk , at
the end of kth iteration are calculated as a
linear conjugation of the corresponding
directions of search at the end of (k–1)th

iteration and the respective residual gra-
dient of the objective function, O(f), after
kth iteration as

(19)
where gk is a conjugation coefficient at the
end of kth iteration. The coefficient gk is

obtained either by Equation 20a using
Polok-Ribier’s (CGPR) modification or
by Equation 20b using Fletcher-Reeve’s
modification (CGFR)
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Further details of these two ap-
proaches are given in Appendix 2. In the
CG methods, the direction of search is im-
portant, since the solution may diverge if
the direction of search loses sight of the
optimal solution. In the LM method, a
manual damping factor is used that con-
tinually tracks the search step (or incre-
ment) so that the optimal solution cannot
move away from the last computed mini-
mum value of the objective function. 

There are two main limitations in find-
ing property data by the coupled heat and
fluid flow and optimization procedure de-
scribed in this manuscript. They are 1) the
accuracy of measured depth and width
and 2) how strongly the depth and the
width vary with the uncertain parameter
(sensitivity).

Results and Discussion

The sensitivity of the computed weld
pool dimensions with respect to the effec-
tive thermal conductivity, effective viscos-
ity, and absorptivity were determined by
several heat transfer and fluid flow calcu-
lations. Figures 1A and B depict a number
of isocontours of the dimensionless pene-
tration, p* , and the dimensionless width,
w* , as a function of k* and m* for data set
No. 3 in Table 1. It is observed from Fig.
1A that the dimensionless penetration, p*

increases with k* or m*. However, the di-
mensionless width, w* , decreases with k*

or m* as shown in Fig. 1B. For k* values
above 7.0, both p* and w* become fairly in-
sensitive to m*. Furthermore, both p*

m and
w* approached a value of unity at high val-
ues of k* and m*. When both p* and w* are
1, pc equals pobs and wc equals wobs and the
calculated results agree with the corre-

sponding measured values. 
The effects of k* and m* on the com-

puted weld pool dimensions can be ex-
plained as follows:

The dimensionless weld penetration,
p* , increases with k* since high values of
thermal conductivity facilitate rapid heat
transport in the downward direction.
However, the higher thermal conductivity
also reduces the surface temperature gra-
dient and the radial convective heat trans-
port and, consequently, decreases. Higher
values of m* lowers radial convection and
the convective heat flow resulting in both
lower weld width and slightly higher peak
temperature. The higher peak tempera-
ture enhances downward heat conduction
and increases penetration. Furthermore,
as k* is progressively increased, conduc-
tion becomes the dominant mechanism of
heat transfer and changes in m* do not sig-
nificantly alter either the peak tempera-
ture or the convective heat transfer rate.
Thus, the weld pool dimensions do not
change significantly with m* at high values
of k* as observed in Fig. 1A and B. 

It is quite apparent that in addition to
the variation in k* or m*, any change in the
value of absorptivity will further influence
the results presented in Fig. 1A and B. Al-
though it has been reported that h de-
pends on laser power (Ref. 43), the ab-
sorptivity is a material property, and its
exact value depends on factors such as the
surface temperature. An increase in the
value of absorptivity implies an enhance-
ment in the heat absorption rate that leads
to higher peak temperature, greater tem-
perature gradient and larger computed
weld pool dimensions for a specific set of
k* and m*. In contrast, a decrease in the
value of absorptivity leads to smaller val-
ues of computed weld pool dimensions for
a specific set of k* and m*. Such a behavior
was also demonstrated in the case of a
GTA weld pool (Ref. 29). To keep the
problem tractable, a single optimized
value of absorptivity (h) for all the weld-
ing conditions considered in the present
work is assumed. 

Figure 2 shows that high values of k*

and m* are necessary to achieve good
agreement between the computed and the
experimental weld pool geometry, i.e., low
values of objective function for data set
No. 3 in Table 1. In contrast, Fig. 3 indi-
cates that low values of both k* and m* are
necessary to reduce the objective function

for data set No. 2 in Table 1. These appar-
ently contrasting results are achieved for
welds with different heat input indexes
(NHI) of 21.90 and 14.97 for data set Nos.
3 and 2, respectively. The results in Figs. 2
and 3 are consistent with the fact that k*

and m* are not materials properties and
their optimum values depend on NHI. To
account for the same in the procedure of
optimization of k* and m* in a simplified
manner, the following linear relationships
are assumed for simplicity:

(21)

where C1 and C3 are the minimum values
of the effective conductivity and effective
viscosity, respectively, and C2, and C4 are
constants. Since k* and m* equal 1 at low
values of NHI, the values of both C1 and C3
are taken to be one. Thus, the optimiza-
tion routine is used to estimate the values
of C2 and C4 for each NHI. 

Results in Figs. 2 and 3 also indicate
that several combinations of k* and m* may
result in low values of O(f) for a given NHI.
In order to seek optimum values for k* and
m* for a particular NHI, an additional con-
straint is useful to achieve a physically re-
alistic solution. Since k* and m* are related
by the turbulent Prandtl number, PrT, its
value (= 0.9) provides a useful constraint.
In other words, out of many possible solu-
tions, the specific combination of k* and
m* nearest to the line corresponding to PrT
= 0.9 will be chosen as the final solution.
PrT is defined as

(22)

where meff = mL + mT, keff  = kL+ kT and mT,
kT are the turbulent viscosity and thermal
conductivity, respectively, and mL and kL
are the viscosity and thermal conductivity
of the liquid, respectively. Finally, Equa-
tion 12 is modified as 

(23)

A set of initial values of C2, C4 and h is
necessary to start the optimization calcu-
lations by all three methods indicated in
Appendixes 1 and 2. It is apparent from

f f f f C C{ } ∫ { } ∫ { }1 2 3 2 4    h
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Table 6 — Sets of Initial Guesses for the Unknown parameters, C2 and C4

Set 1 Set 2 Set 3 Set 4 Optimized values

C2 = 0.5 C2 = 1.0 C2 = 1.5 C2 = 2.0 C2 = 0.252
C4 = 0.5 C4 = 1.0 C2 = 1.5 C4 = 2.0 C4 = 1.115
h  = 0.1 h  = 0.2 h  = 0.3 h  = 0.4 h  = 0.250

Table 5 — Data Used for Calculations of
Temperature and Velocity Fields(a)

Physical Property Value

Liquidus temperature, TL (K) 1800.0
Solidus temperature, TS (K) 1760.0
Ambient temperature, Ta (K) 293.0
Density of liquid metal, r (kg/m3) 7.2 ¥ 103

Thermal conductivity of solid, 25.08
ks (W m–1 K–1)
Thermal conductivity of liquid, 25.08
kL (W m–1 K–1)
Specific heat of solid, 754.0
CPS (J kg–1 K–1)
Specific heat of liquid, 754.0
CPL (J kg–1 K–1)
Temperature coefficient of –0.5 ¥ 10–3

surface tension, dg/dT (N m–1 K–1)
Coefficient of thermal 1.5 ¥ 10–6

expansion, b (K–1)
Viscosity of molten iron 6.7 ¥ 10–3

at 1823 K, m  fl (kg.m–1s–1)

(a) for data set index 3 and 4 (Ref. 24).
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Figs, 1 through 3 that the expression
(∂O(f)/∂fi=1,3 does not conform to a con-
tinuous, convex, or concave-type function
and the solution of Equation 13 involves
multiple local minima in the objective
function. To address this difficulty, the op-
timization calculations have been per-
formed with a number of initial values in
the ranges of 0.10 to 3.0, 0.10 to 3.0, and
0.10 to 0.50 for C2, C4, and h, respectively.
Table 6 presents four such representative
sets of initial values for which the progress
of the optimization calculations are pre-
sented in Figures 4(i) to (iii). All measured
weld pool dimensions indicated in Table 1
were used for the optimization.  These fig-
ures show that the minimum attainable
value of O(f) is affected by the choice of
the initial values in both LM and CG
methods. In the LM method, the mini-
mum value of O(f)   was obtained when the
1st and 2nd set of initial values (Table 6)
were used (Fig. 4i) while the 3rd and 4th
set of initial values resulted in values of
O(f) as 0.219 and 0.837, respectively. In
both the CGPR and CGFR methods, a
minimum value of O(f) = 0.129 was
achieved when the 2nd set of initial values
(Table 6) were used (Figs. 4ii and 4iii). The
value of O(f) could not be reduced below
0.129 with various other sets of initial
guesses using all three optimization pro-
cedures. The final optimum solutions of
C2, C4 and h corresponding to O(f) =
0.129 were the same regardless of the ini-
tial guessed values of C2, C4 and h. For ex-
ample, a set of initial values of C2, C4 and
h equal to 1.0, 1.0, and 0.3, respectively,
yielded nearly similar values of O(f) and
the optimized solution of C2, C4 and h
were the same as those obtained with the
2nd set of initial values (Table 6). Al-
though a reduction in the value of O(f)
from 0.166 in the LM method to 0.129 in
the CG method appears to be small, it
should be noted that O(f) depicts the
square of the summation of the actual er-
rors representing the discrepancy between
pc and pobs, and wc and wobs. This discrep-
ancy can be important even for small val-
ues of O(f) and achieving the smallest pos-
sible value of O(f) is important.

A closed-form relationship between
the dependent variables such as the weld
dimensions and the unknown parameters
does not exist. As a result, the lowest value
of O(f) depends on the initial guessed val-
ues of the unknown parameters. At the
start of the iterations, the initial few gra-
dients of the objective function with re-
spect to the unknown parameters affect
the results of the subsequent iterations
and, ultimately, the optimum value of
O(f). One way to resolve the difficulty re-
sulting from the absence of a closed-form
relation between the objective function
and the unknown parameters is to per-

form the optimization with a number of
initial values so as to arrive at a best pos-
sible optimum solution. Furthermore, the
optimization in the present work was com-
putationally intensive, since the number of
numerical heat transfer and fluid flow cal-
culations for each optimization iteration
was equal to the number of variables mul-
tiplied by the number of welds for sensi-
tivity calculation plus the number of welds
for error verification. However, an appro-
priate choice of the initial values could sig-
nificantly reduce the volume of the com-
putational work.  Based on the results of
optimization, Equation (21) can be rewrit-
ten as

k* = 1.0 + 0.252 NHI

µ* = 1.0 + 1.115 NHI             (24)
The effectiveness of the optimization
process is evident from the fact that all
three optimization methods resulted in
nearly similar sets of the optimum values
of C2, C4, and h.  

Figure 5 shows that both k* and m* in-
crease significantly with NHI consistent
with Equation 24. This behavior is ex-
pected since higher heat input leads to
more rapid transport of momentum and
heat. The computed values of p* and w*

using the optimized values of k* and m*
are plotted in Fig. 6 for all values of NHI.
A fairly satisfactory agreement is obtained
between the computed and measured
weld dimensions. The slight discrepancy
between the computed and the experi-
mental values can be attributed, at least in
part, to the experimental errors.  

Typical computed temperature and ve-
locity fields are shown in Fig. 7. The results
show that the liquid metal is transported
from the middle of the pool outward due
to a negative temperature coefficient of
surface tension. The features of the com-
puted temperature and velocity fields are
typical of the Marangoni convection dom-
inated laser melted pools and have been
discussed in the literature (Refs. 16, 19, 20,
24, 26, 27).

A test for the effectiveness of the pro-
posed deterministic model is to check if
the values of the uncertain parameters can
be evaluated from a relatively small vol-
ume of experimental data. For this pur-
pose, the values of C2, C4, and h were de-
termined from the experimental data for
three welds with NHI = 14.97, 32.90, and
34.53 in Table 1. Figures 8(i) through (iii)
show the variation of the objective func-
tion with number of iterations for four sets
of initial guesses presented in Table 6
using all three optimization methods. It is
observed that the LM method can provide
an approximate minimum value of O(f)
≈0.089 when the 1st and 2nd set of initial
values (Table 6) are used — Fig. 8i. Both
CGPR and CGFR routines could reach

the minimum values of O(f) only when the
2nd set of initial values (Table 6) is used  —
Figs. 8ii and 8iii. The minimum value of
O(f) could be reached within ten itera-
tions using the LM routine and around 80
iterations in both CGPR and CGFR
methods. The values of C2, C4, and h were
found to be 0.252, 1.115, and 0.253, re-
spectively, corresponding to the minimum
value of O(f) following CG methods.  Fol-
lowing the LM method, the optimized val-
ues of C2, C4, and h were found to be
0.265, 1.138, and 0.228, respectively, when
only three sets of experimental data were
used in the optimization process. The op-
timized values of these parameters did not
change significantly when all five sets of
experimental data were used for opti-
mization.

The values of k* and m* estimated in
the present work are within the range of
enhancement factors reported in the liter-
ature. For example, values in the range of
30 to 100 for both k* and m* were esti-
mated through trial and error to achieve
good agreement between the computed
and the measured weld dimensions (Ref.
27). When the k-e turbulence model with
a spatially variable effective viscosity was
used, a maximum value of 16 for m* was re-
ported for a stationary GTA weld pool
(Ref. 26). Although the value of h and the
relationships between NHI and k*, and m*
are valid for the specific conditions of
welding considered here, a similar ap-
proach can be adopted for other welding
conditions (Refs. 29, 30). Since h, k* and
m* are linked with p* and w* through the
equations of conservation of mass, mo-
mentum and energy rather than through a
straightforward polynomial function, local
minima should be avoided by repeating
the procedure with several sets of initial
values. The intensive computational work
needed to determine the uncertain para-
meters results in enhanced reliability of
the numerical modeling of heat transfer
and fluid flow in the weld pool.

Summary and Conclusions

Reliability of numerical heat transfer
and fluid flow calculations in the weld pool
can be significantly enhanced by deter-
mining the optimized values of effective
thermal conductivity, effective viscosity,
and absorptivity from a limited volume of
measured weld dimensions. Three ver-
sions of gradient-based optimization tech-
niques could produce low values of an ob-
jective function and determine the three
aforementioned parameters. Although
the values of these parameters were inde-
pendent of the optimization process, the
volume of the calculations needed and the
manner in which the optimized values
were obtained depended on both the opti-

m m m m

m m

m m
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mization method selected and the initial
guessed values of the parameters. The val-
ues of effective thermal conductivity and
effective viscosity were found to be much
higher than their corresponding molecu-
lar values and also depended on heat
input. Correlations are proposed to deter-
mine these parameters from welding con-
ditions. The use of the optimized values of
absorptivity, effective thermal conductiv-
ity and effective viscosity, determined
from a limited volume of experimental
data and the proposed model, resulted in
good agreement between the computed
and the experimentally determined fusion
zone geometry without the need to adjust
these parameters by trial and error.
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Appendix 1

In order to explain the basic concept of
the LM method, a simplified system in-
volving three unknown parameters, f1, f2,
and f3, and one dependent variable, p*

m

measured under five welding conditions is
considered first. Equation 13 can be writ-
ten for f1, f2, and f3 as:
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(A1, A2, A3)

The values of the three unknowns, f1, f2,
and f3 cannot be directly obtained from
the above equations since they do not ap-
pear explicitly in these equations. The
symbols f1, f2, and f3 resemble k*, m*, and
h (absorptivity), respectively. So, the de-
pendent variable p* is expanded using the
Taylor’s series expansion to explicitly con-
tain values of increments and, f1, f2, and f3.
Considering two successive iterations of
p*

m and taking only the first order terms

(A4)

where Dfk, Dfk and Dfk are three unknown
increments corresponding to f1, f2, and f3
as

(A5)

and fk+1, fk+1, and fk+1 correspond to the
values of three unknowns after (k+1)th it-
eration. Except Dfk, Dfk, and Dfk, all other
terms on the right hand side of Equation
A4 are considered to be known. To solve
for Dfk, Dfk, and Dfk, Equations A1, A2 and
A3 are first rewritten replacing p* by
(p*)k+1 as

(A6, A7, A8)
However, p* equals to pc /pobs, and al-
though pobs is a known measured value, pc

is to be computed using the numerical
heat transfer and fluid flow calculation for

a set of f1, f2, f3 and other known parame-
ters. So, (p* )k+1 that is the value of p* after
(k+1)th iteration is unknown since Dfk,
Dfk,and Dfk are unknown. Next, substitut-
ing right hand side of Equation A4 in the
place of (p*  )k+1, Equations A6, A7, and A8
are rewritten as:

(A9)

(A10)

(A11)

Neglecting higher order differentials e.g

etc., Equations A9, A10

and A11 are further simplified as:

(A12)

(A13)

(A14)
Equations A12, A13, and A14 are next re-
arranged as

(A15)
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(A16)

(A17)

Equations A15, A16, and A17 can be ex-
pressed in matrix form as 

[S]{Dfk}=–{S*} (A18)
where

(A19)

(A20, A21)

Thus, Equations A1, A2, and A3 are mod-
ified to equation A18 where the three un-
known incremental terms Dfk, Dfk, and Dfk

are explicitly defined in terms of the
known quantities. The solution of Dfk, Dfk,
and Dfk are used next to obtain fk+1 , fk+1,
and fk+1 (expression A5) that are em-
ployed to compute (pc )k+1 using the nu-
merical heat transfer and fluid flow model.
Next, O(f)k+1 is calculated as

(A22)

Values of f1, f2, and f3 are assumed to reach
optimum when the calculated value of
O(f)k+1 is smaller than a predefined small
number. For the two dependent variables
p* and w* , Equation A19 is modified as

(A23)
where 

(A24)
Equation A20 will be modified as

(A25)

Equations A5 and A21 do not change
since the number of unknown parameters
remains three. Furthermore, the sensitiv-
ity terms such as

(for i = 1 to 3) in
Equation A18 often tend to be very small
as the values of the unknown parameters
f1, f2 and f3 move close to the optimum. As
a result, the matrix [S] tends to become
singular. To avoid numerical instability,
Equation A18 is further modified follow-
ing the LM method as

(A26)

where l is a scalar damping coefficient,
usually about 0.001, and I is a diagonal ma-
trix given by (Ref. 42)

(A27)

The product lI in Equation A26 ensures
that the left-hand term in Equation A26
will remain nonzero even if the determi-
nant of the matrix [S] is zero. The value of
l is usually increased or decreased by a
factor of ten as the value of the objective
function in subsequent iterations in-
creases or decreases. This, in effect, en-
sures the reduction or enhancement in
step size as the solution respectively tends
to diverge or converge. The algorithm of
the complete procedure using the LM
method can be presented as follows:

Step 1. Guess initial values (e.g., kth) of
unknown variables set, {fk} for i=1, 3 from
Equation 12. 

Step 2. Choose initial value of damping
factor (l).

Step 3. Compute the value of the ob-
jective function, O(fk) from Equation 11.

Step 4. Solve for the set of unknown in-

I

S

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11  0    0

0    S  0

0    0    S
22

33

S I f Sk[ ] +( ){ } = -{ }*l D

∂( )
∂

∂( )
∂

* *p

f

w

f

m
k

i

m
k

i
 or  

S

S

S

S

p

f
p

w

f
w

p

f
p

pw

pw

pw

m
k

m
k m

m
k

m

m
k

m
k

*

*
*

*
*

=

*
*

{ } =

Ï

Ì
Ô
Ô

Ó
Ô
Ô

¸

˝
Ô
Ô

˛
Ô
Ô

=

∂( )
∂ ( ) -

Ê
ËÁ

ˆ
¯̃

+
∂( )

∂ ( ) -
Ê
ËÁ

ˆ
¯̃

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

∂( )
∂ ( ) -

Ê
ËÁ

ˆ
¯̃

+

Â

1

2

3

1 11

5

2

1 1

1
∂∂( )

∂ ( ) -
Ê
ËÁ

ˆ
¯̃

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

∂( )
∂ ( ) -

Ê
ËÁ

ˆ
¯̃

+
∂( )

∂ ( ) -
Ê
ËÁ

ˆ
¯̃

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

Ï

Ì

Ô
Ô
Ô
Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô
Ô

*
*

=

*
*

*
*

=

Â

Â

w

f
w

p

f
p

w

f
w

m
m

k

m

m
k

m
k m

m
k

m

21

5

3 31

5

1

1 1ÔÔ
Ô

¸

˝

Ô
Ô
Ô
Ô
Ô
Ô
Ô

˛

Ô
Ô
Ô
Ô
Ô
Ô
Ô

S

p

f

p

f

w

f

w

f

i jij

m
k

i

m
k

j

m
k

i

m
k

j

m

=

∂( )
∂

∂( )
∂

+

∂( )
∂

∂( )
∂

Ê

Ë

Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜̃

=

* *

* *=
Â

1

5
1 3 for  to ,

S

S S S

S S S

S S

[ ] =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 12 13

21 22 23

31 33

  

  

 S  32

O f p
k

m

k

m
( ) = ( ) -Ê

Ë
ˆ
¯

+ * +

=
Â1 1

1

5 2

1

and  S

S

S

S

p

f
p

p

f
p

p

f
p

p

p

p

m
k

m
k

m

m
k

m
k

m

m
k

m
k

m

*

*
*

=

*
*

=

*
*

=

{ } =

Ï

Ì
ÔÔ

Ó
Ô
Ô

¸

˝
ÔÔ

˛
Ô
Ô

=

∂( )
∂ ( ) -Ê

Ë
ˆ
¯

∂( )
∂ ( ) -Ê

Ë
ˆ
¯

∂( )
∂ ( ) -Ê

Ë
ˆ
¯

Ï

Ì

Ô
Ô
Ô
Ô

Â

Â

Â

1

2

3

11

5

21

5

31

5

1

1

1

ÔÔ

Ó

Ô
Ô
Ô
Ô
Ô

¸

˝

Ô
Ô
Ô
Ô
Ô

˛

Ô
Ô
Ô
Ô
Ô

{ } =

Ï

Ì
ÔÔ

Ó
Ô
Ô

¸

˝
ÔÔ

˛
Ô
Ô

 

D

D

D

D

f

f

f

f

k

k

k

k

1

2

3

S

S S S

S S S

S S

p

f

p

f

p

f

p

f

p

f

p

f

p

m

k

m

k

m

k

m

k

mm

m

k

m

k

m

m

[ ] =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

∂( )
∂

∂( )
∂

∂( )
∂

∂( )
∂

∂( )
∂

∂( )
∂

∂

* * * *

==

* *

=

*

ÂÂ

Â

11 12 13

21 22 23

31 33

1 1 1 21

5

1

5

1 31

5

  

  

 S  32

(( )
∂

∂( )
∂

∂( )
∂

∂( )
∂

∂( )
∂

∂( )
∂

∂( )
∂

∂( )
∂

∂( )
∂

∂( )
∂

*

=

* * * *

==

* *

=

* *

Â

ÂÂ

Â

k

m

k

m

m

k

m

k

m

k

m

k

mm

m

k

m

k

m

m

k

m

k

f

p

f

p

f

p

f

p

f

p

f

p

f

p

f

p

f

p

f

2 11

5

2 2 2 31

5

1

5

3 11

5

3 2mm

m

k

m

k

m

p

f

p

f

=

* *

=

Â

Â
∂( )

∂

∂( )
∂

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

1

5

3 31

5

∂( )
∂

∂( )
∂

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

∂( )
∂

∂( )
∂

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

∂( )
∂

∂( )
∂

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

* *

=

* *

=

* *

=

Â

Â

Â

p

f

p

f
f

p

f

p

f
f

p

f

p

f
f

m
k

m
k

m

k

m
k

m
k

m

k

m
k

m
k

m

3 11

5

1

3 21

5

2

3 31

5

D

D

D 33

31

5
1

k

m
k

m
k

m

p

f
p

=

-
∂( )

∂ ( ) -Ê
Ë

ˆ
¯

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

*
*

=
Â

∂( )
∂

∂( )
∂

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

∂( )
∂

∂( )
∂

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+

∂( )
∂

∂( )
∂

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

* *

=

* *

=

* *

=

Â

Â

Â

p

f

p

f
f

p

f

p

f
f

p

f

p

f
f

m
k

m
k

m

k

m
k

m
k

m

k

m
k

m
k

m

2 11

5

1

2 21

5

2

2 31

5

D

D

D 33

21

5
1

k

m
k

m
k

m

p

f
p

=

-
∂( )

∂ ( ) -Ê
Ë

ˆ
¯

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

*
*

=
Â

1

3

3

1

1 2

2

2

3

m

i

m m

De---7_05  6/6/05  4:08 PM  Page 111



WELDING RESEARCH

JULY 2005-s112

crements {Dfk} for i = 1, 3 from Equation
A26.

Step 5. Compute {fk+1} for i = 1, 3 from
Equation A5.

Step 6. Compute O(fk+1) from Equa-
tion 11.

Step 7. If O(fk+1) ≥ O(fk), set l = 10 l;
reject {fk+1}; go back to step 4.

Step 8. If O(fk+1) < O(fk), set l = 0.1 l.
Step 9. Exit if O(fk+1) – O(fk) ≤ e1 and

{fk+1}–{fk} ≤ e2; or go back to step 4. e1

and e2 are two small, predefined numbers.

Appendix 2

Considering the objective function de-
fined in Equation 11 with two dependent
variables, p* and w* ,and three unknown
parameters, f1, f2, and f3, Equation 17 can
be written as

(A28)
where fk+1 , fk+1, dk, dk, and bk confirm to
their definitions presented previously. In
Equation 18, as O(fi)k+1 contains (p* )k+1

and (w* )k+1 obtained from numerical heat
transfer and fluid flow code using values of
fk+1 , fk+1, and fk+1, and O(fi)k+1 depends on
fk+1 , fk+1, and fk+1. Thus, replacing (fi)k+1 in
Equation 18 by fk+1 , fk+1, and fk+1, and sub-
stituting the right-hand side of Equation
A28 in place of them, Equation 18 can be
rewritten as

(A29)

Considering two dependent variables,
and p*

m , w*
m , 

can be ex-
pressed further as

(A30)
Substituting Equation A30 in Equation
A29 and using Taylor’s expansion, Equa-
tion A29 can be substantially rearranged
to give bk as (Refs. 41, 42)

(A31)
Furthermore, following Equation 13,

Equations 20a and 20b can respectively be
rewritten as

(A32)

(A33)
for k = 1, 2 and, g0 = 0. Apart from the cal-
culation of conjugate coefficient, gk, both
CGPR and CGFR methods are the same.
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Call For Papers
The 6th European Conference on Welding, Joining, and Cutting

Santiago de Compostela, Spain, June 28–30, 2006

The 6th European Conference on Welding, Joining, and Cutting, sponsored by the European Federation for Joining, Welding, and
Cutting (EWF), in association with the Spanish Association of Welding and Joining Technologies (CESOL), and the Metallurgical
Research Association of the Northwest (AIMEN), has issued a call for papers and posters. 

Papers are sought on a wide variety of topics including welding, joining, surfacing, cutting and related processes and equipment, such
as laser beam and plasma arc welding, brazing and soldering, adhesive bonding, friction stir welding, resistance welding, welding con-
sumables. Visit www.cesol.es/EUROJOIN6/16JTS.php for a complete list of recommended topics, detailed author’s submittal infor-
mation, and description of the prizes to be presented in four categories.

The deadline for submission of titles and 300–500-word abstracts is September 30, 2005. The deadline for submission of completed
conference papers or posters is February 28, 2006. Manuscripts and oral presentations may be presented in English or Spanish.
Documents must be submitted in electronic MS Word format with figures provided in TIFF, JPEG, or GIF formats.

Send your intention to participate, including title and abstract of the work to be presented, to CESOL, Gabino Jimeno 5B, 28026
Madrid, Spain; FAX: +34 91 500 53 77; cesol@cesol.es, by September 30, 2005.
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