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Abstract
In recent years numerical solutions of the convective heat transfer equations
have provided significant insight into the complex materials processing
operations. However, these computational methods suffer from two major
shortcomings. First, these procedures are designed to calculate temperature
fields and cooling rates as output and the unidirectional structure of these
solutions preclude specification of these variables as input even when their
desired values are known. Second, and more important, these procedures
cannot determine multiple pathways or multiple sets of input variables to
achieve a particular output from the convective heat transfer equations.

Here we propose a new method that overcomes the aforementioned
shortcomings of the commonly used solutions of the convective heat transfer
equations. The procedure combines the conventional numerical solution
methods with a real number based genetic algorithm (GA) to achieve
bi-directionality, i.e. the ability to calculate the required input variables to
achieve a specific output such as temperature field or cooling rate. More
important, the ability of the GA to find a population of solutions enables this
procedure to search for and find multiple sets of input variables, all of which
can lead to the desired specific output. The proposed computational
procedure has been applied to convective heat transfer in a liquid layer
locally heated on its free surface by an electric arc, where various sets of
input variables are computed to achieve a specific fusion zone geometry
defined by an equilibrium temperature. Good agreement is achieved
between the model predictions and the independent experimental results,
indicating significant promise for the application of this procedure in finding
multiple solutions of convective heat transfer equations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent decades, the numerical solutions of the Navier–
Stokes equation and the energy equation have provided
useful information about various complex materials processing
operations. The computed temperature fields, cooling rates,
the shape and the size of the fusion zone (FZ), solidification
front velocity and the velocity fields in the molten region
have provided significant insight into the materials processing
operations and the nature of the processed products that could
not have been obtained otherwise [1–27]. However, these

calculation procedures have not found extensive use because
of several shortcomings.

First, the numerical solutions of the equations of
conservation of mass, momentum and energy are designed to
calculate the temperature and the velocity fields for a given
set of input variables. For example, when a moving heat
source interacts with a material, the input variables may include
the radius of the heat source, total power, the distribution of
the power and the relative motion between the heat source
and the material [12, 17]. However, in many cases the desired
temperature field or the cooling rate is known and the real
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need is to determine the input variables that can produce
the desired cooling rate or the temperature field. In other
words, the reverse problem is sometimes more important than
the forward problem and the unidirectional models cannot
solve the reverse problem. Second and more important, the
convective heat transfer problems are often highly non-linear
and multiple solutions exist for many complex problems. For
example, a given FZ geometry, defined by an equilibrium
temperature surface, can result from multiple combinations of
input variables. The current generation of numerical models
cannot determine multiple pathways or multiple sets of input
variables to achieve a particular output from the convective
heat transfer equations.

Here we propose a new method that overcomes the
aforementioned shortcomings of the commonly used solutions
of the convective heat transfer equations. The ability of the
genetic algorithm (GA) to find the global optimal solution
independent of the initial guessed values [28–31] makes it
appropriate for solving the reverse problem. In other words,
the GA can calculate the required input variables to achieve
a specific output such as temperature field or cooling rate.
More important, the ability of the GA to find a population of
solutions [28–31] enables the proposed procedure to search for
and find multiple sets of input variables, all of which can lead to
the desired specific output. Thus, the proposed computational
procedure is capable of finding multiple solutions of convective
heat transfer equations.

In the past, GA operations often involved binary coded
strings to express variable values and the procedure was
very intensive, computationally [29]. However, significant
advances have been made in the application of GA in recent
years. Recently developed real number based GAs have been
shown to be highly efficient, computationally. In particular,
parent centric, generalized, generation gap GA has been shown
to provide rapid convergence [30, 31]. To demonstrate the
capabilities of the proposed computational method, it has been
applied to convective heat transfer in a liquid layer locally
heated on its free surface by a heat source. The heat source, an
electric arc, moves linearly on a steel plate and forms a liquid
pool. The liquid steel undergoes strong recirculation driven
mainly by a combination of electromagnetic and Marangoni
forces and, to a much lesser extent, the buoyancy force. The
velocity field within the molten metal pool and the temperature
field in the entire steel plate, can be obtained by numerically
solving the equations of conservation of mass, momentum and
energy in three dimensions. The input variables include the arc
current, voltage and the scanning speed. Unlike conventional
convective heat transfer calculation procedures, the method
proposed here can be used to determine multiple combinations
of input variable sets, all of which can result in a target FZ
geometry determined by an equilibrium temperature. In effect,
this paper shows that the proposed computational procedure
can be applied to find multiple sets of solutions, i.e. sets of
input variables. Each set of input variables can result in a
specified output such as the depth and the width of the molten
pool. The multiple solutions are verified by comparing them
with the independent experimental measurements.

2. Mathematical model

2.1. Modelling of heat transfer and fluid flow in the FZ

An incompressible, laminar and Newtonian liquid flow is
assumed in the molten metal pool. The linear momentum
conservation equation for the j th direction is given by [12,17]

ρ
∂uj

∂t
+ ρ

∂(uiuj )

∂xi

= ∂

∂xi

(
µ

∂uj

∂xi

)
+ Sj , (1)

where ρ is the density, t is the time, xi is the distance along the
i = 1, 2 and 3 directions, uj is the velocity component along
the j direction, µ is the viscosity and Sj is the source term for
the j th momentum equation and is given as [12, 17]

Sj = − ∂p

∂xj

+
∂

∂xj

(
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∂xj

)
− C

(
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f 3
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)
uj

− ρU
∂ui

∂xi

+ Sbj , (2)

where p is the pressure, fL is the liquid fraction, B is a
constant introduced to avoid division by zero, C (=1.6 × 104)

is a constant that takes into account solid–liquid mushy zone
morphology, U is the scanning speed and Sbj represents both
the electromagnetic and the buoyancy source terms. The third
term on the right-hand side of equation (2) represents the
frictional dissipation in the mushy zone according to the
Carman–Kozeny equation for flow through a porous media.
The pressure field was obtained by solving the following
continuity equation simultaneously with the momentum
equation [12, 17]:

∂(ρui)

∂xi

= 0. (3)

The total enthalpy, H , is represented by a sum of sensible
heat, h, and latent heat content, �H , i.e. H = h + �H , where
h = ∫

Cp dT , Cp is the specific heat, T is the temperature,
�H = fLL, L is the latent heat of fusion, and the liquid
fraction, fL, is assumed to vary linearly with temperature in
the solid–liquid mushy zone [12, 17]:

fL =




1, T > TL,
T − TS

TL − TS
, TS � T � TL,

0, T < TS,

(4)

where TL and TS are the liquidus and the solidus temperatures,
respectively. The thermal energy transport in the steel plate
can be expressed by the following modified energy equation
[12, 17]:

ρ
∂h

∂t
+ ρ

∂(uih)

∂xi

= ∂
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)
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∂(ui�H)
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−ρU
∂h
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− ρU
∂�H

∂xi

, (5)

where k is the thermal conductivity. Since the system is
symmetrical about the vertical plane containing the locus of the
arc, only half the steel plate is considered. The top surface of
the molten pool is assumed to be flat for the sake of simplicity.
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The velocity boundary condition is given by [12, 17]

µ
∂u

∂z
= fL

dγ

dT

∂T

∂x
,

µ
∂v

∂z
= fL

dγ

dT

∂T

∂y
,

w = 0,

(6)

where u, v and w are the velocity components along the x, y

and z directions, respectively, and dγ /dT is the temperature
coefficient of surface tension. As shown in equation (6),
the u and v velocities are determined from the Marangoni
effect [12, 17]. The w velocity is zero since there is no flow
of liquid metal perpendicular to the pool top surface. The heat
flux at the top surface is given by [12, 17]

k
∂T

∂z
= dQη

πr2
b

exp

(
−d(x2 + y2)

r2
b

)
− σε(T 4 − T 4

a ) − hc(T − Ta), (7)

where rb is the arc radius of a circular region within which
the arc power is focused, d is the dimensionless arc power
distribution factor which determines the nature of distribution
of the power density of the arc, Q is the total arc power, η is
the arc efficiency, σ is the Stefan–Boltzmann constant, hc is
the heat transfer coefficient and Ta is the ambient temperature.
The first term on the right-hand side of equation (7) is the
heat input from the heat source, defined by a Gaussian heat
distribution. The second and third terms represent the heat
loss by radiation and convection, respectively. The boundary
conditions are defined as zero flux across the symmetric surface
(i.e. at y = 0) by [12, 17]

∂u

∂y
= 0, v = 0,

∂w

∂y
= 0 (8)

and
∂h

∂y
= 0. (9)

At all other surfaces, temperatures are taken as ambient
temperature and the velocities are set to zero.

2.2. Method for the numerical calculation of heat transfer
and fluid flow

In this study, the transient nature of the problem is transformed
to steady-state mode by using a co-ordinate system that moves
with the heat source [12, 17]. The governing equations of
the conservation of mass, momentum and energy in three
dimensions (3D) are discretized using the power law scheme
[32]. The computational domain is divided into small
rectangular control volumes. The discretized equations for
the variables are formulated by integrating the corresponding
governing equation over the control volumes. The detailed
method of discretizing the governing equations is available
in [12, 17]. The discretized equations are solved using the
SIMPLE algorithm [32] to obtain the temperature and velocity
fields. A 104×66×66 grid system is used in the calculation and
the corresponding computational domain has dimensions of
149 mm (length), 71 mm (width) and 60 mm (depth). Spatially
non-uniform grids with finer grids near the heat source are used
for the maximum resolution of variables.

Two conditions had to be independently satisfied for
the convergence of each variable. First, the residuals for the

Table 1. Data used in the calculations [5].

Physical property Value

Liquidus temperature, Tl (K) 1785.0
Solidus temperature, Ts (K) 1745.0
Density of metal, ρ (kg m−3) 7200.0
Thermal conductivity of solid, 25.08
ks (J m−1 s−1 K−1)

Specific heat of solid, Cps (J kg−1 K−1) 702.24
Specific heat of liquid, Cpl (J kg−1 K−1) 806.74
Temperature coefficient of surface −0.5 × 10−3

tension, dγ /dT (N m−1 K−1)
Coefficient of thermal expansion, β (K−1) 1.5 × 10−6

Viscosity of molten iron at 1823 K, 6.7 × 10−3

µ (kg m−1 s−1)

Table 2. Input variables and experimentally measured depth and
width of the FZ [5].

Arc current (A) 250.0
Arc voltage (V) 16.5
Scanning speed (mm s−1) 8.33
Depth of penetration (mm) 1.11
FZ width (mm) 5.17

velocities and the enthalpy had to be smaller than 10−4. The
residuals were defined as∑

domain |[∑nb anb
nb + SU�V ]/aP − 
P|∑
domain |
P| ,

where a is the coefficient of the variable 
 in the discretized
equation calculated based on the power law scheme [32],
subscript P represents a given grid point, subscript nb
represents the six neighbours of the given grid point P in the 3D
orthogonal co-ordinate system, 
 is a general variable such as
velocity or enthalpy, �V is the volume of the control volume
and the coefficient aP is defined as: aP = ∑

nb anb − SP�V ,
where the terms SU and SP are used in the linearization of
the source term, S, as: S = SU + SPφP. Second, upon
convergence, the ratio of (net heat input rate)/(total heat output
rate + heat accumulation rate) should lie between 0.999 and
1.001 to satisfy the heat balance. More restrictive convergence
conditions do not change the final results while increasing the
computational time significantly.

The convective heat transfer calculations normally
converge within 4000 iterations, which take about 5 min in
a PC with 3.2 GHz Intel P4 CPU and 512 Mb PC2700 DDR-
SDRAM memory.

The data used for the convective heat transfer calculations
are given in table 1.

2.3. Genetic algorithm as an optimization model

A GA is used to search for multiple sets of important
input variables, i.e. arc current, voltage and scanning speed,
to achieve a target FZ geometry. This approach enables
calculation of multiple pathways to achieve a target FZ
geometry and provides a bi-directional capability to the
proposed computational procedure. To start with, many initial
sets of randomly chosen values of the three input variables are
created. A systematic global search is next undertaken to find
the optimum set of values of these input variables that leads
to the least error between the calculated and the desired depth
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and width of the FZ. The input variables and the measured FZ
dimensions are given in table 2.

In order to calculate the multiple sets of input variables,
the direct calculation of heat transfer and fluid flow must be
undertaken many times with randomly chosen input variables,
i.e. current, voltage and the scanning speed. The randomly
chosen values of the three input variables do not always
produce the desired FZ dimensions. The resulting mismatch
between the computed and the desired FZ dimensions is
expressed by the following objective function, O(f ):

O(f ) =
(

pc

pe
− 1

)2

+

(
wc

we
− 1

)2

, (10)

where pc and wc are the computed depth and width of the FZ,
respectively, and pe and we are the corresponding experimental
values of the specified FZ geometry given in table 2. The
objective function, O(f ), depends on the three input variables:
current, I , voltage, V and scanning speed, U :

O(f ) = O(f1, f2, f3) = O

(
I

Ir
,

V

Vr
,

U

Ur

)
, (11)

where Ir, Vr and Ur are the reference values that represent
the order of magnitude of the input variables. Note that
equation (11) has been made non-dimensional in order to
preserve the importance of all the three input variables
by making their non-dimensional values comparable in
magnitude. The GA produces new individuals, or sets of
input variables, with iterations based on the evolutionary
principles [30, 31]. The GA used in this study is a parent-
centric recombination (PCX) operator-based generalized
generation gap (G3) model [30, 31]. The specific application
of this model for obtaining multiple sets of input variables to
achieve the specified FZ geometry is described as follows. This
model was chosen because it has a faster convergence rate on
standard test functions when compared with other evolutionary
algorithms [30,31]. The algorithm for the model is as follows:

(1) A population is a collection of many individuals and each
individual represents a set of randomly chosen values of
the three input variables, i.e. arc current, voltage and
scanning speed. A parent refers to an individual in the
current population. The best parent is the individual that
has the best fitness, that is, it gives the minimum value
of the objective function, defined by equation (10), in the
entire population. The best parent and two other randomly
selected parents are chosen from the population.

(2) From the three chosen parents, two offsprings or new
individuals are generated using a recombination scheme.
PCX based G3 models are known to converge rapidly
when three parents and two offsprings are selected [30,31].
A recombination scheme is a process for creating new
individuals from the parents.

(3) Two new parents are randomly chosen from the current
population.

(4) A subpopulation of four individuals that includes the two
randomly chosen parents in step 3 and two new offsprings
generated in step 2 is formed.

(5) The two best solutions, i.e. the solutions having the least
values of the objective function, are chosen from the
subpopulation of four members created in step 4. These
two individuals replace the two parents randomly chosen
in step 3.

(6) The calculations are repeated from step 1 until
convergence is achieved.

The above steps, as applied to this study, are shown in
figure 1. The working of the model to find the input variables
by minimizing the objective function is illustrated in figure 2.
The recombination scheme (step 2) used in the present model
is based on the PCX operator. A brief description of the
PCX operator, as applied to the present problem of three input
variables, is described as follows.

First, three parents, i.e. (f 0
1 , f 0

2 , f 0
3 ), (f 1

1 , f 1
2 , f 1

3 ),
(f 2

1 , f 2
2 , f 2

3 ) are randomly selected from the current popula-
tion. Here, the subscripts represent the three input variables,
while the superscripts denote the parent identification number.
The mean vector or centroid

⇀g =
(

f 0
1 + f 1

1 + f 2
1

3
,
f 0

2 + f 1
2 + f 2

2

3
,
f 0

3 + f 1
3 + f 2

3

3

)

of the three chosen parents is computed. To create an offspring,
one of the parents, say ⇀x

(p)= (f 0
1 , f 0

2 , f 0
3 ) is chosen randomly.

The direction vector,
⇀
d

(p)= ⇀x
(p) − ⇀g is next calculated from

the selected parent to the mean vector or centroid. Thereafter,
from each of the other two parents, i.e. (f 1

1 , f 1
2 , f 1

3 ) and
(f 2

1 , f 2
2 , f 2

3 ), perpendicular distances, Di , to the direction

vector,
⇀
d

(p)

, are computed and their average, D̄, is found.
Finally, the offspring, i.e. ⇀y =(f ′

1, f
′
2, f

′
3), is created as follows:

⇀y = ⇀x
(p)

+wζ | ⇀
d

(p) | +
3∑

i=1,i �=p

wηD̄
⇀
h

(i)

, (12)

where
⇀
h

(i)

are the orthonormal bases that span the subspace

perpendicular to
⇀
d

(p)

, and wζ and wη are randomly calculated
zero-mean normally distributed variables. The values of the
variables that characterize the offspring,

⇀
y = (f ′

1, f
′
2, f

′
3), are

calculated as follows:

f ′
1 = f 0

1 + f11 + f12, (13)

f ′
2 = f 0

2 + f21 + f22, (14)

f ′
3 = f 0

3 + f31 + f32, (15)

where

f11 = wζ

(
2f 0

1 − f 1
1 − f 2

1

3

)
, (16)

f21 = wζ

(
2f 0

2 − f 1
2 − f 2

2

3

)
, (17)

f31 = wζ

(
2f 0

3 − f 1
3 − f 2

3

3

)
, (18)

f12 = wη

(
a2 + b2

2

) [
1 −

(
2f 0

1 − f 1
1 − f 2

1

3d

)2
]

, (19)

f22 = wη

(
a2 + b2

2

) [
1 −

(
2f 0

2 − f 1
2 − f 2

2

3d

)2
]

, (20)

f32 = wη

(
a2 + b2

2

) [
1 −

(
2f 0

3 − f 1
3 − f 2

3

3d

)2
]

. (21)
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Figure 1. Generalized generation gap (G3) model using PCX operator.

The expressions for the variables d, a2 and b2, used in
equations (19)–(21), are as follows:

d =
[ (

2f 0
1 − f 1

1 − f 2
1

3

)2

+

(
2f 0

2 − f 1
2 − f 2

2

3

)2

+

(
2f 0

3 − f 1
3 − f 2

3

3

)2 ]1/2

, (22)

a2 = e1 ×
√

1 − (a1)2, (23)

b2 = e2 ×
√

1 − (b1)2, (24)

where

a1 =
3∑

i=1

(f 1
i − f 0

i )((2f 0
i − f 1

i − f 2
i )/3)

d × e1
, (25)

e1 =
√

(f 1
1 − f 0

1 )2 + (f 1
2 − f 0

2 )2 + (f 1
3 − f 0

3 )2, (26)

b1 =
3∑

i=1

(f 2
i − f 0

i )((2f 0
i − f 1

i − f 2
i )/3)

d × e2
, (27)

e2 =
√

(f 2
1 − f 0

1 )2 + (f 2
2 − f 0

2 )2 + (f 2
3 − f 0

3 )2. (28)

3. Results and discussion

Three steps are involved in the calculation of the multiple sets
of input variables to achieve a specified output or result from
the convective heat transfer equations. First, a specified FZ
geometry is identified by specifying the depth and width of the

Figure 2. Flow chart of the G3 model.

FZ. Second the methodology described in this paper is utilized
to calculate multiple sets of solutions, i.e. various combinations
of arc current, voltage and scanning speed, with each solution
capable of producing the same depth and width of the FZ. Third
and finally, the results obtained from the model are adequately
verified.
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Figure 3. Initial population of randomly chosen values of input
variable sets and their objective function values. (a) A large space of
variables was searched to find optimum solutions as shown by the
randomly selected initial input variable sets. (b) The low values of
the objective functions of several individuals in the initial population
indicate the possibility of existence of multiple optimal solutions.

As a first step, the depth and width of the FZ selected
as an example are indicated in table 2. These values were
experimentally obtained for a set of current, voltage and
scanning speed indicated in the table. It is useful to specify
these dimensions from an experiment because one of the
solutions, i.e. the input variable set used to produce the FZ
geometry is known. Thus, one of the solutions determined by
the computational procedure must include the current, voltage
and scanning speed combination used in the experiment. The
other solutions must also be verified.

The second step, i.e. the calculation of the multiple
solution sets starts by specifying a large random population
of potential solutions, i.e. randomly generated sets of values
of input variables of arc current, voltage and scanning speed.
A population size of 100 input variable sets was used. This
number of variable sets was determined based on how the
population size influenced the effectiveness of GA using
standard test functions [19, 30, 31]. Figure 3(a) depicts the
initial values of the solutions, i.e. sets of current, voltage and
scanning speed. The values of the input variables were chosen
randomly within their appropriate ranges to maintain diversity
in the input values and explore a large domain of input variables
so as to include all possible solutions. The values of current
were chosen in the range of 150–450 A, voltage in the range of
8–25 V and scanning speed in the range of 2–17 mm s−1. The
variable sets are then improved iteratively.

The progress of the iterative calculation is monitored
by calculating the objective function values, defined by
equation (10), for each set of input variables. A solution with
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Figure 4. Several fairly diverse input variable sets could produce
low values of the objective function indicating the existence of
alternate paths to obtain the target FZ geometry. The plots show the
input variable sets that produced low values of the objective
function, O(f ) with iterations. (a) Individuals in the initial
population with O(f ) less than 4.0 × 10−2; (b) individuals after five
iterations with O(f ) less than 3.0 × 10−3; and (c) individuals after
ten iterations with O(f ) less than 1.0 × 10−3.

Table 3. Optimized sets of values of input parameters, i.e.
arc current (I ), arc voltage (V ) and scanning velocity (U ), to
achieve the following target FZ dimensions: depth of
penetration = 1.11 mm and width = 5.17 mm. The target FZ
geometry was obtained experimentally using the following input
variables: I = 250 A, V = 16.5 V and U = 8.33 mm s−1.

Individual Current, Voltage, Scanning speed,
solutions I (A) V (V) U (mm s−1)

(a) 246.9 17.1 8.40
(b) 299.1 13.4 9.49
(c) 311.5 12.8 9.23
(d) 165.2 22.4 7.91
(e) 414.7 11.2 1.86
( f ) 266.3 12.1 6.29

a low objective function value indicates that the set of input
variable values it contains result in a small discrepancy between
the computed and the specified FZ geometry. Figure 3(b)
shows the computed values of the objective functions for
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FZ
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Figure 5. Comparisons between the calculated and the experimental FZ geometry for different optimized combinations of input variables
given in table 3. The black arrows on the experimental micrograph indicate the location of the FZ boundary. The inner isotherm is 1745 K
and represents the calculated FZ boundary. The outer isotherm is 773 K.
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all the individuals depicted in figure 3(a). The plot shows
that for many sets of input variables, the values of the
objective function, O(f ), are fairly low, indicating that each
of these input variable sets can produce a FZ geometry that
is close to the specified geometry. Figures 4(a), (b) and (c)
indicate several clusters of input variable combinations that
have objective function values lower than 0.04, 0.003 and
0.001, corresponding to the 1st, 5th and 10th generation of
individuals, respectively. It is noteworthy that in figure 4,
the sets of input variables are distributed throughout the input
variable space, signifying the existence of multiple paths to
attain the specified FZ geometry. The progressive reduction of
the objective function values of the best individuals indicates
that the solutions are improved with generations (iterations).
When the values of the objective function are low and do not
decrease further with iterations, the computed input variable
sets constitute the final solutions, which are presented in
table 3.

Finally, the accuracy of the computed solutions was
verified. For each individual solution listed in table 3, the
depth and width of the FZ were calculated by using the
forward convective heat transfer model and the computed
values were compared with those obtained experimentally.
Note that the values of current, voltage and scanning speed in
solution (a) of table 3 are almost the same as the corresponding
experimental values listed in table 2. The comparison between
the computed and the experimental FZ dimensions is shown
in figures 5(a)–( f ). The FZ boundary on the experimental
micrograph is indicated by black arrows. The calculated FZ
boundary is marked by the solidus temperature of the steel,
i.e. 1745 K. The calculated 773 K isotherm is also depicted
in the figure, just to mark the area experiencing significant
structural changes in the heat-affected zone (HAZ). The 773 K
isotherm does not exactly depict the boundary of the HAZ.
Figure 5 shows that the optimized input variable sets result in
the correct prediction of the FZ shape and size in each case.
The sets of values of the three input variables listed in table 3
are considerably different from each other. For example,
the current values ranged from 165 to 414 A. The voltage
ranged from 13.4 to 22.4 V and the scanning speed varied from
6.3 to 15.4 mm s−1. All these differences in the important
input variables indicate significant diversity in the paths, all
of which lead to the same set of specified FZ dimensions.
Thus, the proposed computational procedure, which combines
the convective heat transfer calculations with a real number
based GA, can find multiple pathways to achieve a specified
FZ geometry.

4. Summary and conclusions

A computational method for finding multiple solutions of the
convective heat transfer problem is proposed. The proposed
methodology involves synthesis of a forward numerical
procedure to solve the equations of conservation of mass,
momentum and energy with a GA to overcome two important
difficulties of the traditional solution procedures. First, the new
methodology allows bi-directional capability so that it can be
used to calculate the traditional input variables. Second, and
more important, because of the highly non-linear nature of
many convective heat transfer problems, multiple pathways

or solutions exist, with each solution capable of resulting in
a specified output. The proposed methodology is capable of
identifying multiple solutions through a global search for many
solutions.

The methodology has been demonstrated in a convective
heat transfer problem where a moving electric arc heats and
melts a steel plate. A traditional unidirectional forward model
that numerically solves the equations of conservation of mass,
momentum and energy was combined with a real number
based GA. The proposed methodology was used to calculate
multiple combinations of arc current, voltage and scanning
speed so that each combination was capable of resulting in
a given depth and width of the FZ. The calculated solutions,
i.e. combinations of current, voltage and scanning speed were
tested by computing the FZ geometry from the temperature
fields and comparing them with the specified depth and width
of the FZ. Although the calculation procedure presented here
focuses on the multiple sets of input variables that can each
produce a given FZ geometry, similar calculations can easily
be done for other specified attributes such as the cooling rates.
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