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Abstract
Values of several parameters that affect calculation of heat transfer during
fusion welding such as the arc efficiency, arc radius and the effective thermal
conductivity of the liquid metal are not always readily available. Following
an inverse approach, a smart model that embodies an iterative procedure for
the optimization of multiple unknown variables within the framework of
phenomenological laws that govern heat transfer and fluid flow in the weld
pool is developed. The optimization scheme considers the sensitivity of
computed weld geometry with the unknown parameters. The weld
penetration was found to be sensitive to all the unknown variables
considered. The weld width was influenced mainly by the arc efficiency and
the arc radius. The initial values of the unknown variables did not affect
their optimum values but affected the number of iterations necessary for
convergence. The model could correctly learn values of multiple unknown
parameters from only a few measurements of weld penetration and width
and, based on the knowledge of these parameters, provided realistic
predictions of heat transfer, fluid flow and weld geometry.

1. Introduction

In the previous two decades, application of transport
phenomena has resulted in improved understanding of fusion
welding processes and welded materials [1–3]. For example,
numerical calculations of heat transfer and fluid flow in
welding have enabled accurate quantitative calculations of
thermal cycles and fusion zone geometry [4–7]. In many
simple systems, the computed thermal cycles have been used
to quantitatively understand weld metal phase composition
[8–10], grain structure [10, 11], inclusion structure [12–14]
and weld metal composition changes owing to both
vaporization of alloying elements [15, 16] and dissolution
of gases [17, 18]. Capabilities to quantitatively understand
geometry, composition and structure of welds in simple
systems have provided hope that one day welding engineers
may be able to use numerical models to tailor weldment
characteristics according to specifications. In reality, the
numerical heat transfer and fluid flow codes for fusion welding
have so far been used mostly as a research tool [19–21]
rather than as a tool for design and manufacturing in the

industry. There are several reasons for the restricted use of
these advanced tools. An important difficulty is the need for
several input parameters that cannot be easily specified based
on scientific principles.

Current computer models for the calculation of heat
transfer and fluid flow in fusion welding require many
input parameters to define the welding system such as
the system geometry, welding variables and thermophysical
data. Several of these parameters such as the welding
current, voltage and welding speed can be easily specified
with a reasonable degree of certainty. In contrast, for gas
tungsten arc welding process, values of five parameters cannot
always be assigned easily. These unknown parameters are:
arc efficiency, arc radius, power distribution parameter, the
effective thermal conductivity and the effective viscosity of
the liquid metal. Although the values of arc efficiency have
been experimentally measured for many welding conditions,
the reported values vary significantly even for apparently
similar welding conditions, reflecting the complexity of the
welding process. Measured values of the arc radius and power
distribution parameter depend on welding conditions and, as
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a result, their values cannot be ascertained with confidence
except for certain narrow windows of welding conditions.
Values of the effective thermal conductivity and effective
viscosity are important, since they allow accurate modelling
of the high rates of transport of heat and mass in systems
with strong fluctuating velocities that are inevitable in small
weld pools with very strong convection currents. The values
of effective conductivity and viscosity are properties of the
specific welding system and not inherent physical properties
of the liquid metal [19, 21–23]. The results obtained from
the numerical heat transfer and fluid flow models depend
significantly on the values of these five variables. Although
the values of these variables are often assigned from past
experience, currently there is no unified basis to accurately
prescribe the values of these variables based on scientific
principles. A recourse is to develop a modelling procedure
utilizing the power of a phenomenological heat transfer and
fluid flow model to calculate the optimum values of the five
unknown variables from a limited number of experiments.
These unknown values can then be used in a numerical heat
transfer and fluid flow model under similar welding conditions.

Three optimization algorithms are commonly utilized for
parameter estimation. They are the Levenberg–Marquardt
method, conjugate gradient technique and conjugate gradient
method with adjoint problem. These methods have been
discussed elsewhere [24–26]. The Levenberg–Marquardt
technique is widely used for the estimation of optimum
single values of several unknown parameters and involves
optimization of variables by nonlinear least square technique.
The conjugate gradient technique utilizes minimization of
an appropriately constructed objective function through an
iterative procedure. A suitable step size is taken for each
iteration along a direction of descent in order to minimize
the objective function. The direction of descent is obtained
as a linear combination of the negative gradient direction
at the current iteration and the direction of the descent of
the previous iteration. The conjugate gradient method with
adjoint problem is utilized if the unknown parameters can be
expressed in terms of the coefficients of a known trial function.
This method uses a Lagrange multiplier, and does not require
calculation of the sensitivity matrix that is inherent in both
the Levenberg–Marquardt method and the conjugate gradient
technique. Since the Levenberg–Marquardt method is suitable
for the determination of optimum values of several variables,
this technique is used in the research reported in this paper.

The optimization schemes for the estimation of
unknown parameters in fusion welding are computationally
very intensive since they require multiple runs of the
phenomenological heat transfer and fluid flow model. As a
result, similar efforts reported so far [27–31] have been based
on a rather simple heat conduction equation, often utilizing
Rosenthal’s analytical solution [30, 31] that completely
ignored convection in the weld pool. Furthermore, the primary
focus of these works was to determine the distribution of
heat flux at the work-piece surface exposed to an arc or a
laser beam from measured temperatures at several monitoring
locations in the solid region. It seems that the adaptation of
the simplified heat conduction equation in the previous works
was mandated, at least to a large extent, because of the lack
of advanced software necessary to rigorously analyse heat

Table 1. Welding variables and experimentally measured weld
penetration and width [37].

Experimental value

Data Weld Weld
set Voltage Current velocity Penetration width
index (V) (A) (mm s−1) (mm) (mm)

1 15.2 200 8.33 1.46 4.61
2 16.5 250 8.33 1.11 5.17
3a 16.5 250 6.25 1.38 5.97
4 14.2 200 4.17 1.85 4.90
5 16.5 250 4.17 1.65 6.76

a Interpolated data, not directly measured.

and fluid flow in the weldment. With the advances in the
computational hardware and software in recent years, it is now
possible to undertake computationally intensive optimization
schemes that embody realistic three-dimensional numerical
heat transfer and fluid flow calculations.

The approach adopted here is inherently different from the
neural network technique where the input and output variables
are related through a set of hidden nodes and their relationship
does not have to comply with any physical law. In contrast,
when the optimization algorithm embodies a heat transfer
and fluid flow model, as adopted in the research reported in
this paper, the input welding parameters and the output weld
pool geometry are related by a phenomenological framework
of the equations of conservation of mass, momentum and
energy. In effect, the complete optimization scheme acts
as a smart model that identifies few unknown parameters
in an iterative manner starting from a set of their initial
guessed values exploiting that phenomenological framework.
In particular, five unknown welding parameters are estimated
through a smart phenomenological modelling approach which
includes a combination of the Levenburg–Marquardt method
of nonlinear parameter optimization, a numerical heat transfer
and fluid flow model and a set of experimentally measured
weld pool penetration and width (table 1). The optimization
algorithm minimizes the error between the predicted and the
experimentally observed penetration and the weld width of
a GTA weld pool by considering the sensitivity of the weld
penetration and width to each of the unknown parameters.

2. Heat transfer and fluid flow simulation

The flow of liquid metal in the weld pool in three-dimensional
Cartesian coordinate system is represented by the following
momentum conservation equation [4, 32]:

ρ
∂uj

∂t
+ ρ

∂(uiuj )

∂xi

= ∂

∂xi

(
µ

∂uj

∂xi

)
+ Sj , (1)

where ρ is the density, t the time, xi the distance along the
i = 1, 2 and 3 directions, uj the velocity component along the
j direction, µ the effective viscosity and Sj is the source term
for the j th momentum equation and is given as:

Sj = − ∂p

∂xj

+
∂

∂xj

(
µ

∂uj

∂xj

)
− C

(
(1 − fL)2

f 3
L + B

)
uj + Sbj , (2)

where p is the pressure, fL the liquid fraction, B a constant
introduced to avoid division by zero, and C(=1.6 × 104) is
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a constant that takes into account mushy zone morphology
and Sbj represents both the electromagnetic and buoyancy
source terms. The third term on the rhs represents the
frictional dissipation in the mushy zone according to the
Carman–Kozeny equation for flow through a porous media
[33, 34]. The value of the effective viscosity in equation (1)
is a property of the specific welding system and not an
inherent property of the liquid metal. Typical values of
effective viscosity are much higher than that of the molecular
viscosity [35, 36]. The higher value is important, since it
allows accurate modelling of the high rates of transport of
momentum in systems with strong fluctuating velocities that
are inevitable in small weld pools with very strong convection
currents [22, 36]. The pressure field was obtained by solving
the following continuity equation simultaneously with the
momentum equation:

∂(ρui)

∂xi

= 0. (3)

The total enthalpy H is represented by a sum of sensible
heat h and latent heat content �H , i.e. H = h + �H ,
where h = ∫

Cp dT , Cp the specific heat, T the temperature,
�H = fLL, L is the latent heat of fusion and the liquid fraction
fL is assumed to vary linearly with temperature in the mushy
zone [4]:

fL =




1, T > TL,

T − TS

TL − TS
, TS � T � TL,

0, T < TS,

(4)

where TL and TS are the liquidus and solidus temperature,
respectively. The thermal energy transport in the weld
workpiece can be expressed by the following modified energy
equation [30]:

ρ
∂h

∂t
+ ρ

∂(uih)

∂xi

= ∂

∂xi

(
k

Cp

∂h

∂xi

)
− ρ

∂(�H)

∂t

−ρ
∂(ui�H)

∂xi

, (5)

where k is the thermal conductivity. In the liquid region, the
value of the thermal conductivity in equation (5) is taken as
the effective thermal conductivity which is a property of the
specific welding system and not an inherent property of the
liquid metal. Typical values of effective thermal conductivity
are much higher than that of the thermal conductivity of the
liquid. The higher value is important, since it allows accurate
modelling of the high rates of transport of heat in systems with
strong fluctuating velocities that are inevitable in small weld
pools with very strong convection currents [34]. Since the
weld is symmetrical about the weld centre line only half of the
workpiece is considered. The weld top surface is assumed to
be flat. The velocity boundary condition is given as [4]:

µ
∂u

∂z
= fL

dγ

dT

∂T

∂x
,

µ
∂v

∂z
= fL

dγ

dT

∂T

∂y
,

w = 0,

(6)

where u, v and w are the velocity components along the x, y

and z directions, respectively, and dγ /dT is the temperature
coefficient of surface tension. As shown in equation (6), the
u and v velocities are determined from the Marangoni effect.
The w velocity is equal to zero since there is no flow of liquid
metal perpendicular to the pool top surface. The heat flux at
the top surface is given as:

k
∂T

∂z
= dQη

πr2
b

exp

(
−d(x2 + y2)

r2
b

)
−σε(T 4 − T 4

a ) − hc(T − Ta), (7)

where rb is the arc radius of a circular region within which
the arc power is focused, d the dimensionless arc power
distribution factor which determines the nature of distribution
of the power density of the arc, Q the total arc power, η the
arc efficiency, σ the Stefan–Boltzmann constant, hc the heat
transfer coefficient and Ta is the ambient temperature. The
first term on the rhs is the heat input from the heat source,
defined by a Gaussian heat distribution. The second and
third terms represent the heat loss by radiation and convection,
respectively. The boundary conditions are defined as zero flux
across the symmetric surface (i.e. at y = 0) as:

∂u

∂y
= 0, v = 0,

∂w

∂y
= 0, (8)

∂h

∂y
= 0. (9)

At all other surfaces, temperatures are set at ambient
temperature and the velocities are set to be zero.

3. Optimization procedure

The Levenberg–Marquardt optimization procedure involves
minimization of an objective function that depicts the
difference between the computed and measured values. For
example, if the penetration and width of the fusion zone are
of interest, an objective function, O(f ), can be defined as
follows:

O(f ) =
M∑

m=1

[
pc

m − pobs
m

pobs
m

]2

+
M∑

m=1

[
wc

m − wobs
m

wobs
m

]2

=
M∑

m=1

[p∗
m − 1]2 +

M∑
m=1

[w∗
m − 1]2, (10)

where pc
m and wc

m are the penetration and the width of the weld
pool calculated by the numerical heat transfer and fluid flow
model, respectively and, pobs

m and wobs
m are the corresponding

experimentally determined values. Note that, p∗
m and w∗

m are
non-dimensional and indicate the extent of over- or under-
prediction for penetration and weld width, respectively. The
subscript m in equation (10) corresponds to a specific set
of welding parameters such as welding voltage, current,
welding speed and other variables in a series of M number
of different welds. A computed parameter such as computed
penetration, pc

m, indicates that the calculation is done with
mth set of welding parameters. Equation (10) bears a strong
resemblance to the functional form of least square technique
for the minimization of error. Often an experiment is repeated
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to ensure reliability and to determine the standard errors in
measurements. For example, if each of the M welds are
fabricated a multiple number of times, it is possible to assign a
standard deviation in the measured values of penetration, σpm

,
and width, σwm

. These standard deviations can be included in
the objective function such that more reliable measurements
with small standard deviations get a higher weight than less
reliable measurements that are characterized by relatively
large standard deviations. When every weld is fabricated a
multiple number of times, the objective function, O(f ), can
be redefined as follows.

O(f ) =
M∑

m=1

[
1

σpm

(p∗
m − 1)

]2

+
M∑

m=1

[
1

σwm

(w∗
m − 1)

]2

. (11)

This definition of the objective function ensures that the
more accurate measurements will have greater contribution
in the calculation of the objective function. In equations (10)
and (11), f refers to a given set of five unknown parameters
in non-dimensional forms such that:

{f } ≡ {f1 f2 f3 f4 f5} ≡ {η r∗ d k∗ µ∗}
≡

{
η

rb

er
d

keff

kS

µ

µfl

}
. (12)

It is to be recognized that in addition to the five variables
indicated in equation (12), there are uncertainties in the value
of the variables such as the current and voltage we consider
as ‘known’. These uncertainties are small since variables
such as current and voltage can be measured fairly accurately.
In equation (12), er, kS, µfl, keff and µ, respectively, refer to
electrode radius, thermal conductivity of solid material at
room temperature, viscosity of molten iron at 1823 K, effective
thermal conductivity and effective viscosity of liquid metal.
All unknown parameters included in f are dimensionless. The
data used in the calculations are given in table 2. Evidently,
O(f ) is a function of f since O(f ) contains variables p∗

m and
w∗

m, which are dependent on the parameters included in f .
Assuming that O(f ) is continuous and has a minimum value,
the optimum values of the five unknowns are obtained by
differentiating equation (10) with respect to the five unknown
parameters and equating each derivative to zero:(

∂O(f )

∂fi

)
i=1,5

= 2

[
M∑

m=1

(p∗
m − 1)

∂p∗
m

∂fi

+
M∑

m=1

(
w∗

m − 1
) ∂w∗

m

∂fi

]
i=1,5

= 0, (13)

where fi represents any one of the five unknowns in
dimensionless form indicated in equation (12). Equation (13)
contains partial derivatives of weld width and penetration
with respect to all five unknown parameters. These partial
derivatives are generally referred as sensitivity of the computed
weld width and penetration with respect to the unknown
parameters. The values of these sensitivity terms are computed
numerically by running the numerical heat transfer and fluid
flow code and subsequently, calculating the derivatives. For
example, the sensitivity of non-dimensional penetration, p∗

m,
with respect to efficiency, η, is calculated from the following

Table 2. Data used in the calculations.

Physical property Value

Liquidus temperature, TL (K) 1785.0
Solidus temperature, TS (K) 1745.0
Density of liquid metal, ρ (kg m−3) 7.2 × 103

Thermal conductivity of solid, KS (W m−1 K−1) 25.08
Specific heat of solid, CpS (J kg−1 K−1) 702.24
Specific heat of liquid, CpL (J kg−1 K−1) 806.74
Temperature coefficient of surface tension, −0.5 × 10−3

dγ /dT (N m−1 K−1)

Coefficient of thermal expansion, β (K−1) 1.5 × 10−6

Viscosity of molten iron at 1550˚C, 6.7 × 10−3

µfl (kg m−1 s−1)
Radius of tungsten electrode, er (mm) 1.0

relation:
∂p∗

m

∂η
= {p∗

m(η + δη, r∗, d, k∗, µ∗, other parameters)

−p∗
m(η, r∗, d, k∗, µ∗, other parameters)}{δη}−1,

(14)

where δη is very small compared with η. Expression (14)
depicts that each sensitivity term needs two executions of
the numerical heat and fluid flow analysis. For convergence,
equation (13) calls for both p∗

m and w∗
m to be very close to one.

In other words, the calculated pc
m and wc

m should be close to the
corresponding pobs

m and wobs
m for all M sample welds. Since pc

m

and wc
m in equation (13) are obtained from the solution of the

numerical heat transfer and fluid flow model for a certain set
of five unknown parameters, and these unknown parameters
do not explicitly appear in equation (13), this equation cannot
provide a direct solution for the desired unknown parameters.
As shown in appendix, considerable rearrangements of the
equations are necessary so that they can serve as a basis for
an iterative scheme to evaluate the unknown parameters. The
final equations take the following form:

[S]{�f k} = −{S∗}, (15)

where �f k are the increments of the f values after k iterations;
[S] and {S∗} are defined in the appendix by equations (A16)
and (A17), respectively. The iterations are continued until the
objective functions defined by equation (13) are satisfied. The
solution methodology is discussed in detail in the appendix.

4. Results and discussion

Obtaining the optimum solutions of the five unknown
parameters requires calculation of several sensitivity terms, Sij ,
defined by equation (A21). These terms indicate the effects
of variation of the unknown variables on the dimensionless
penetration and weld width. Figures 1(a) and (b) show that
an increase in η enhances both p∗

m and w∗
m significantly. This

behaviour is anticipated since an increase in η enhances the
total absorbed heat flux, and consequently, the size of the
weld pool. The penetration is dictated by the heat transfer
in the downward direction. An increase in r∗ always reduces
the heat flux on the surface and in turn, the conductive heat
transfer in the downward direction. Thus, an increase in
r∗ always reduces penetration leading to shallower welds.
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Therefore, p∗
m decreases with the increase in r∗ for any given

value of η. The manner in which r∗ affects dimensionless
width, w∗

m, depends on the value of η. Low values of arc
efficiency, η, leads to a weak temperature gradient along the
weld pool surface. Spreading of arc energy over a larger
area resulting from high values of r∗ further weakens the
temperature gradient, which, in turn, results in weak surface
velocities in the radial direction. Consequently, the amount of
convective heat transported toward the solid–liquid interface
is diminished leading to smaller weld width. However, at high
values of η, a strong temperature gradient exists at the surface
which leads to strong convective heat transfer toward the weld
periphery. A wider distribution of arc energy can now still
maintain the strong temperature gradient over a wider area
without any appreciable decrease in the effective radial heat
transfer. Consequently, the computed weld width increases
with r∗ when η is sufficiently high. For example, figure 1(b)
shows that at high values of η, w∗

m increases as r∗ increases
from 2.0 to 3.5 while the situation reverses at lower values of η.
For all values of current and welding speed investigated, the
effects of arc efficiency and dimensionless arc radius on the
dimensions of the weld pool were similar to those depicted in
figure 1.

Figure 1(a) shows that there are several combinations of η

and r∗ that can provide p∗
m = 1. Similarly, from figure 1(b) it is

possible to obtain several combinations of η and r∗ that would
result in w∗

m = 1. However, the same set of η and r∗ does
not lead to p∗

m = w∗
m = 1. Therefore, graphical optimization

cannot be relied upon to determine even a set of two values

(a)

(b)

Figure 1. Influence of η on p∗
m and w∗

m. Welding parameters:
I = 250 A, V = 16.5 V, v = 8.33 mm s−1, d = 1.0, k∗ = 5.02 and
µ∗ = 7.46.

of the unknown parameters, let alone the values of all five
variables that needs to be optimized.

Figures 2(a) and (b) show the effects of variation of the
arc distribution parameter, d, on p∗

m and w∗
m. It is observed

that an increase in d from 0.5 to 1.0 enhances p∗
m. As d is

increased further, p∗
m becomes insensitive to d over the entire

range of its value. In contrast, w∗
m appears to be insensitive

to d. The smaller the value of d, the smaller is the peak
energy density and vice versa. In other words, the total heat
energy is distributed over a smaller area for d = 1.0 than
that for d = 0.5. Thus, as d is increased from 0.5 to 1.0,
the heat flux, and consequently the peak temperature in the
weld pool increases. The resulting high temperature gradient
enhances the heat transfer by conduction in the downward
direction resulting in deeper weld pool. However, the peak
temperature does not increase appreciably with further increase
in d and therefore, the computed penetration remains roughly
constant. As d is increased from 0.5 to 1.0, the total energy
tends to be focused near the weld pool centre. However, the
surface temperature gradient and the radial convective heat
transport increases. Because of these two opposing effects, the
computed weld width does not show any appreciable change
with d.

Figures 3(a) and (b) show the effect of k∗ on p∗
m and w∗

m.
As k∗ increases from about 1.0 to 7.0, p∗

m increases and w∗
m

shows a slight decrease. With further increase in k∗, both p∗
m

and w∗
m show very little change. In a weld pool without any

surface active elements, the main mechanism of heat transport
in the downward direction is conduction. An increase in k∗

(a)

(b)

Figure 2. Influence of d on p∗
m and w∗

m. Welding parameters:
I = 200 A, V = 14.2 V, v = 4.17 mm s−1, r∗ = 2.0, µ∗ = 7.46 and
k∗ = 8.36.
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(a)

(b)

Figure 3. Influence of k∗ on p∗
m and w∗

m. Welding parameters:
I = 200 A, V = 15.2 V, v = 8.33 mm s−1, r∗ = 2.0, d = 1.5 and
µ∗ = 7.46.

facilitates higher heat conduction. Thus, p∗
m increases with

increase in k∗. However, higher values of thermal conductivity
also lower the surface temperature gradient. Consequently,
the radial convective heat transport is decreased resulting in
decreased weld width at higher k∗. As k∗ is increased beyond
7.0, the computed weld pool dimensions show very little
changes indicating no further enhancement in conductive heat
transport.

Figures 4(a) and (b) show that p∗
m increases slightly with

increase in µ∗ whereas w∗
m shows an opposite effect. For a

given temperature gradient, an increase in µ∗ reduces surface
velocity, since a more viscous fluid flows slowly under the
same driving force. The reduced radial convective heat transfer
can contribute to the reduction of the weld pool width and
slightly higher peak temperature. The slight increase in weld
penetration is consistent with the higher peak temperature and
enhanced downward conduction heat transfer. When the value
of k∗ is high, changes in µ∗ does not significantly affect the
peak temperature. Therefore, the penetration does not change
significantly with µ∗ at high values of k∗ as observed in
figure 5(a). Similarly, at high values of k∗, conduction heat
transport is important and the changes in µ∗ do not affect the
weld pool width as observed in figure 5(b).

The results presented so far were required for the
construction of sensitivity terms in equation (15). A large
volume of numerical calculations of heat transfer and fluid flow
are needed to construct the matrix [S] in equation (15) each
time an iteration is performed. To start the calculation, a set
of initial guessed values are necessary for all the five unknown

(a)

(b)

Figure 4. Influence of µ∗ on p∗
m and w∗

m. Welding parameters:
I = 200 A, V = 15.2 V, v = 8.33 mm s−1, r∗ = 2.0, d = 1.0 and
k∗ = 1.67.

parameters. When totally random initially guessed values
of the unknown parameters were selected, the calculations
either failed to converge or resulted in optimized solutions that
were not physically meaningful. However, when the values
of the unknown parameters were forced to remain within a
realistic range of values, the final results converged to one
set of optimum values of the unknown parameters for which
the objective function attained a minimum value for different
initial guessed values of the unknown parameters. Table 3
shows the realistic ranges of the unknown parameters and
three sets of initial guessed values of the unknown parameters.
Figures 6(a)–(f ) show the results of the calculations for three
different sets of initial guessed values presented in table 3.
The fluctuations in the values of the five unknown parameters
with iterations are plotted in figures 6(a)–(e) for the three
sets of guessed values. No fluctuation was observed after
about 45 iterations for all the parameters. Figure 6(f ) shows
that the error, O(f ), is not reduced beyond 45 iterations.
However, there are two typical features worth noting. First,
figures 6(a)–(f ) show that the nature of fluctuation of all the
unknown parameters depends on the choice of their initial
values. The fluctuations in the values of all parameters stop
after about 20 iterations when the first set of initial values
was used. The minimum number of iterations needed for
convergence for the second and third sets of initial values was
about 35 and 45, respectively. Second, figure 6(e) shows that
the starting error is much higher when the third set of initial
values was used. As a result, it took more number of iterations
to achieve convergence. Thus, the volume of computations
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(a)

(b)

Figure 5. Influence of µ∗ on p∗
m and w∗

m for various k∗. Welding
parameters: I = 200 A, V = 15.2 V, v = 8.33 mm s−1, η = 0.35,
r∗ = 2.0 and d = 1.0.

Table 3. Various sets of initial guesses for the five unknown
parameters.

Initial guessed values
Unknown
parameters First Second Third Permissible
(non-dimensional) set set set range

η 0.30 0.45 0.60 0.30–0.60
r∗ 2.00 2.80 3.50 2.00–3.50
d 0.50 1.25 2.00 0.50–2.50
k∗ 1.00 8.33 16.67 1.00–17.00
µ∗ 1.49 8.21 14.93 1.00–15.00

needed for optimization depends on the choice of the initial
set of guessed values of the unknown parameters. The final
optimum values for all the unknown parameters remained same
for all three sets of initial values of unknown parameters.

The optimum values of arc efficiency, arc radius,
arc distribution parameter, effective thermal conductivity
and effective viscosity obtained from the modelling are
presented in table 4. Figure 7 shows that the computed
values of p∗

m and w∗
m obtained using these optimum values

are in fair agreement with the corresponding experimental
measurements. However, the predicted penetrations
corresponding to the first and fourth measurements (table 1) are
relatively lesser in comparison to their measured values. The
poor agreement for those two cases may be partially attributed
to possible errors in measurements since a fair agreement
was observed for all the other predictions. A more detailed
comparison between the computed weld pool geometry and
the experimentally measured geometry is presented in figure 8.
The calculated results also show the temperature contours and

the computed velocity field. The computed velocity field
shows that the liquid metal is transported from the middle of
the pool outwards to the periphery due to negative temperature
coefficient of surface tension. These calculated results are
consistent with the typical temperature and velocity fields for
GTA welds reported in the literature. In the weld pool, heat
is transported by a combination of convection and conduction.
The relative importance of convection and conduction in the
overall transport of heat can be evaluated from the value of
Peclet number, Pe, which is defined by:

Pe = uρCpLR

k
, (16)

where u is the average velocity, LR the characteristic length
taken as the width of the weld pool and ρ, Cp and k are the
density, specific heat and thermal conductivity, respectively.
When Pe is less than one, the heat transport within the weld
pool occurs primarily by conduction. When Pe is much
higher than one, the primary mechanism of heat transfer is
convection. The order of magnitude of Pe can be easily
computed by taking u = 0.15 m s−1, LR = 6 mm, and
other parameters from table 2 as about 50. For this value
of Pe, the heat is transported within the weld pool mainly by
convection.

Although the values of the five unknown parameters
determined are valid only for the specific conditions of
welding, there are two important reasons for their calculations.
First, they are needed for phenomenological modelling, i.e.
for the calculation of weld pool geometry and cooling
rate using numerical heat transfer and fluid flow model.
Second, because of organized research in recent years, there
is now a growing quantitative knowledge base for fusion
welding, consisting of data, mechanisms, models, rules and
laws applicable specifically for fusion welding. Significant
expansion of this knowledge base is necessary for it to serve
as a basis for the control of welding processes aimed at
achieving enhanced reliability and serviceability of welded
structures.

5. Summary and conclusions

A smart phenomenological model involving the Levenberg–
Marquardt method of parameter estimation and a well-tested
three-dimensional numerical model for calculation of heat
transfer and fluid flow in the weld pool is developed for
the estimation of five unknown welding parameters for GTA
welding. A set of experimental data on weld penetration and
width for several welding conditions were used to estimate
arc efficiency, arc radius, arc distribution parameter, effective
thermal conductivity and effective viscosity of the liquid weld
metal. The optimization scheme required calculation of how
the computed weld geometry was affected by these unknown
parameters. The computed weld penetration was found to be
sensitive to all these five parameters. The weld width was
influenced mainly by arc efficiency and arc radius and, to

a much lesser extent, by other parameters. The optimum
values of the five unknown parameters were independent of
their initial guessed values, although the volume of numerical
calculations depended on their initial values. The procedure
could correctly estimate the unknown welding parameters
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(a) (b)

(c)

(e)

(d)

(f)

Figure 6. Progress of calculation with three sets of initial guessed values. The guessed values are presented in table 3.

Table 4. Unknown welding parameters determined by the model.

Unknown Estimated
parameter value

Arc efficiency, η 0.33
Arc radius, rb (mm) 2.2
Arc distribution parameter, d 2.0
Effective thermal conductivity 104.0

of liquid metal, keff (W m−1 K−1)
Effective viscosity 0.10

of liquid metal, µ (kg m−1 s−1)

based on only a few experimental measurements. The accuracy
of the estimated set of the unknown parameters was verified
using the numerical heat transfer and fluid flow model and
the experimental data. The values of these parameters are
useful for numerical heat transfer and fluid flow calculations.
Furthermore, the smart phenomenological modelling and
its application described in this paper is a contribution

to the growing quantitative knowledge base in fusion
welding.
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Appendix

In order to explain the basic concept for the optimization in
detail, a simplified system involving one dependent variable,
p∗

m, measured under three welding conditions is considered
first. It is hoped that by explicitly stating all the important
steps and avoiding complex symbolic representations, the
method can be useful to beginner researchers in the field.
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Figure 7. Computed values of p∗
m and w∗

m using the optimized set of
five unknown parameters. Data used in the calculations are
presented in table 2.

Figure 8. Experimentally determined and computed weld pool
geometry. The length of the black arrows show the magnitude of the
velocities and the solid lines show the isotherms. Welding variables:
I = 250 A, V = 16.5 V and v = 8.33 mm s−1 welding speed; other
data used in the calculations are given in table 2.

It is further assumed, for simplicity, that there are only two
unknown parameters, f1 and f2. Finally the application of the
methodology to determine five unknown welding parameters
is explained. Equation (13) can be written for f1 and f2 as:

3∑
m=1

[
(p∗

m − 1)
∂p∗

m

∂f1

]
= 0, (A1)

3∑
m=1

[
(p∗

m − 1)
∂p∗

m

∂f2

]
= 0. (A2)

The values of the two unknowns, f1 and f2, cannot be
directly obtained from the above equations since they do not
appear explicitly in these equations. However, the dependent
variable p∗

m can be expanded using Taylor’s series expansion
to explicitly contain values of increments and f1 and f2.
Considering two successive iterations of p∗

m and taking only
the first order terms:

(p∗
m)k+1 = (p∗

m)k +
∂(p∗

m)k

∂f1
�f k

1 +
∂(p∗

m)k

∂f2
�f k

2 , (A3)

where �f k
1 and �f k

2 are two unknown increments of f1 and
f2. All other terms on the rhs of equation (A3) are considered
to be known. The value of p∗

m at the end of (k + 1)th iteration,
(p∗

m)k+1, is unknown since �f k
1 and �f k

2 , and hence, f1 and
f2 after (k + 1)th iteration are unknown. It should be noted
here that p∗

m is always considered to be evaluated through
the numerical heat transfer and fluid flow simulation using
a corresponding set of f1 and f2 and other known parameters.

Equations (A1) and (A2) are rewritten replacing p∗
m by

(p∗
m)k+1 as:

3∑
m=1

[
((p∗

m)k+1 − 1)
(∂p∗

m)k+1

∂f1

]
= 0, (A4)

3∑
m=1

[
((p∗

m)k+1 − 1)
(∂p∗

m)k+1

∂f2

]
= 0. (A5)

Substituting (p∗
m)k+1 by the terms on the rhs of equation (A3),

both equations (A4) and (A5) are rewritten as:
3∑

m=1

[(
(p∗

m)k +
∂(p∗

m)k

∂f1
�f k

1 +
∂(p∗

m)k

∂f2
�f k

2 − 1

)

× ∂((p∗
m)k + (∂(p∗

m)k/∂f1)�f k
1 + (∂(p∗

m)k/∂f2)�f k
2 )

∂f1

]
= 0, (A6)

3∑
m=1

[(
(p∗

m)k +
∂(p∗

m)k

∂f1
�f k

1 +
∂(p∗

m)k

∂f2
�f k

2 − 1

)

×∂((p∗
m)k + (∂(p∗

m)k/∂f1)�f k
1 + (∂(p∗

m)k/∂f2)�f k
2 )

∂f2

]
= 0. (A7)

Neglecting higher order differentials such as (∂/∂f1)×
((∂(p∗

m)k/∂f1)�f k
1 ), equations (A6) and (A7) are simpli-

fied as,
3∑

m=1

[(
(p∗

m)k +
∂(p∗

m)k

∂f1
�f k

1 +
∂(p∗

m)k

∂f2
�f k

2 − 1

)

×∂(p∗
m)k

∂f1

]
= 0, (A8)

3∑
m=1

[(
(p∗

m)k +
∂(p∗

m)k

∂f1
�f k

1 +
∂(p∗

m)k

∂f2
�f k

2 − 1

)

×∂(p∗
m)k

∂f2

]
= 0. (A9)

Equations (A8) and (A9) can be rearranged as:
3∑

m=1

[
∂(p∗

m)k

∂f1

∂(p∗
m)k

∂f1

]
�f k

1 +
3∑

m=1

[
∂(p∗

m)k

∂f1

∂(p∗
m)k

∂f2

]
�f k

2

= −
3∑

m=1

[
∂(p∗

m)k

∂f1
((p∗

m)k − 1)

]
, (A10)

3∑
m=1

[
∂(p∗

m)k

∂f2

∂(p∗
m)k

∂f1

]
�f k

1 +
3∑

m=1

[
∂(p∗

m)k

∂f2

∂(p∗
m)k

∂f2

]
�f k

2

= −
3∑

m=1

[
∂(p∗

m)k

∂f2
((p∗

m)k − 1)

]
. (A11)
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Equations (A10) and (A11) can also be expressed as

S11�f k
1 + S12�f k

2 = −S
p

1 , (A12)

S21�f k
1 + S22�f k

2 = −S
p

2 . (A13)

Equations (A12) and (A13) can be expressed in a matrix
form as: [

S11 S12

S21 S22

] {
�f k

1

�f k
2

}
= −

{
S

p

1

S
p

2

}
(A14)

or
[S]{�f k} = −{S∗}, (A15)

where

[S] =
[
S11 S12

S21 S22

]

=




3∑
m=1

∂(p∗
m)k

∂f1

∂(p∗
m)k

∂f1

3∑
m=1

∂(p∗
m)k

∂f1

∂(p∗
m)k

∂f2

3∑
m=1

∂(p∗
m)k

∂f2

∂(p∗
m)k

∂f1

3∑
m=1

∂(p∗
m)k

∂f2

∂(p∗
m)k

∂f2




(A16)

and

{S∗} =
{

S
p

1

S
p

2

}

=




3∑
m=1

∂(p∗
m)k

∂f1
((p∗

m)k − 1)

3∑
m=1

∂(p∗
m)k

∂f2
((p∗

m)k − 1)




. (A17)

Thus, equations (A1) and (A2) are modified to equation (A14)
where the two unknown incremental terms �f k

1 and �f k
2 are

explicitly defined in terms of known quantities. All other terms
in equation (A14) are known at the end of kth iteration. The
variables �f k

1 and �f k
2 are determined from the solution of

equation (A14). The unknown parameters f1 and f2 after the
(k + 1)th iteration are obtained from the following relations:

f k+1
1 = f k

1 + �f k
1 ,

f k+1
2 = f k

2 + �f k
2 .

(A18)

The updated values of f k+1
1 and f k+1

2 are used next to evaluate
(pc

m)k+1 through the numerical heat transfer and fluid flow
simulation. Next, O(f ) is calculated from the following
equation:

O(f ) =
3∑

m=1

((p∗
m)k+1 − 1)

2 = 0. (A19)

The value of O(f ) calculated from (A19) is compared with
that calculated previously after the kth iteration. Values of f1

and f2 are assumed to have converged when the value of O(f )

calculated from (A19) after the (k + 1)th iterations is found to
be smaller than a pre-defined small number.

The calculation procedure can be easily extended for
any number of unknown variables, if sufficient number
of experimental data sets is available. For example, for

the five unknown parameters considered in this paper, the
expression (A16) is modified as:

[S] =




S11 S12 S13 S14 S15

S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

S51 S52 S53 S54 S55


 , (A20)

where

Sij =
5∑

m=1

(
∂(p∗

m)k

∂fi

∂(p∗
m)k

∂fj

+
∂(w∗

m)k

∂fi

∂(w∗
m)k

∂fj

)
,

for i, j = 1–5, (A21)

Indices i and j refer to the number of unknown parameters.
Furthermore,

{S∗} =




S
pw
1

S
pw
2

S
pw
3

S
pw
4

S
pw
5




(A22)

with

S
pw
i =

5∑
m=1

(
∂(p∗

m)k

∂fi

((p∗
m)k − 1) +

∂(w∗
m)k

∂fi

((w∗
m)k − 1)

)
,

for i = 1–5. (A23)

The unknown matrix {�f k} in equation (A15) has also to be
modified as:

{�f k} =




�f k
1

�f k
2

�f k
3

�f k
4

�f k
5




. (A24)

Expression (A18) should now be treated as,

f k+1
1 = f k

1 + �f k
1 ,

f k+1
2 = f k

2 + �f k
2 ,

f k+1
3 = f k

3 + �f k
3 ,

f k+1
4 = f k

4 + �f k
4 ,

f k+1
5 = f k

5 + �f k
5 .

(A25)

Furthermore, the sensitivity terms such as ∂(p∗
m)k/∂fi or

∂(w∗
m)k/∂fi (for i = 1–5) in expressions (A16) and (A21) often

tend to be very small as the values of the unknown parameters
f1, f2, f3, f4 and f5 move close to the optimum values. As
a result, the matrix [S] may tend to become a singular matrix.
To avoid any numerical instability, equation (A15) is further
modified following Levenburg–Marquardt method as:

([S] + λI){�f k} = −{S∗}, (A26)

where λ is a scalar damping coefficient which is usually taken
as 0.001. I is a diagonal matrix defined as [26]:

I =
[
S11 0
0 S22

]
. (A27)
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Figure 9. Flow chart of the model.

Hence, equation (A26) can be rewritten as:[[
S11 S12

S21 S22

]
+ λ

[
S11 0

0 S22

]] {
�f k

1

�f k
2

}
= −

{
S

p

1

S
p

2

}
. (A28)

The order of I will always be same as that of the matrix [S].
Thus the product λI in equation (A26) ensures that the left-
hand term in equation (A26) will remain non-zero even if the
determinant of the matrix [S] is zero. The sequence of steps
involved in the modelling is shown in figure 9.
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