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Calculations of fluid flow and heat transfer in the weld pool are strongly influenced by the values of
effective thermal conductivity and effective viscosity of the liquid metal. The values of these
variables are uncertain since the welding conditions and the fluid flow characteristics within the
weld pool influence them. Following an inverse modeling approach, the present work develops a
smart model that embodies a multivariable optimization scheme within the framework of a
phenomenological heat transfer and fluid flow model to estimate the uncertain parameters necessary
for weld pool modeling. The optimization scheme considers the sensitivity of the calculated weld
geometry with respect to the unknown parameters. To avoid unrealistic optimized solutions, the
smart model is internally guided to look for only the physically significant solutions. The model
could estimate the effective thermal conductivity and effective viscosity for conduction mode laser
welding as a function of nondimensional heat input from six sets of experimental measurements of
weld pool depth and width. ©2004 American Institute of Physics.@DOI: 10.1063/1.1695593#

I. INTRODUCTION

Investigations of heat and mass transfer in the weld pool
are important for understanding fusion welding processes
and welded materials.1–3 Direct experimental measurement
of temperature and velocity fields in the weld pool is a dif-
ficult task and such measurements are restricted to the weld
pool surface in most cases. A recourse is to numerically solve
the equations of conservation of mass, momentum, and en-
ergy to systematically study weld characteristics such as
thermal cycles and weld pool dimensions.4–7 The computed
thermal cycles can be further used to quantitatively under-
stand weld metal phase composition,8–10 grain structure,10,11

inclusion structure,12–14and weld metal composition changes
owing to both vaporization of alloying elements15,16 and dis-
solution of gases.17,18 Although the numerical simulation
models have been extensively used as a research tool,19–23

their use for designing and manufacturing activities in the
industry has been rather limited. An important difficulty is
that these models need many input parameters some of
which cannot be accurately prescribed from fundamental
principles.2,24

Values of variables related to the workpiece geometry,
welding parameters, and material properties are necessary for
numerical calculations of heat transfer and fluid flow in the
weld pool. In the case of laser welding, several of these
parameters such as the laser power, spot diameter, and weld-
ing speed can be specified with a reasonable degree of cer-
tainty. However, the values of effective thermal conductivity
and the effective viscosity cannot be determined from funda-
mental principles.2,24–28Values of these variables are impor-
tant, since they allow modeling of the high rates of transport
of heat, mass, and momentum in systems with strong fluctu-

ating velocities that are inevitable in small weld pools with
very strong convection currents. Enhanced values of liquid
thermal conductivity and viscosity2,24–28 have been fre-
quently used as effective values in consideration of the fluc-
tuating components of velocities in the weld pool. Alterna-
tively, the two-equationk–e turbulence model has also been
used in estimating effective viscosity and effective thermal
conductivity in the weld pool.24,29 However, the two-
equationk–e turbulence model contains empirical constants
that were originally developed to model parabolic fluid flow
in large systems such as large pipes. Since the effective ther-
mal conductivity and viscosity are system properties, in this
work their values are determined from the combination of a
heat transfer and fluid flow model, an optimization
algorithm,25,26,29 and a limited volume of experimentally
measured weld pool dimensions for various welding condi-
tions.

The optimization procedure attempts to estimate the un-
known parameters from the sensitivity of the known input
variables with respect to the unknown parameters. The sen-
sitivity terms are calculated by running the heat transfer and
fluid flow model several times for small changes in the un-
known parameters. The computationally intensive nature of
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TABLE I. Measured weld dimensions and welding parameters~see Ref. 35!.

Data set
index

Laser
power
~W!

Weld
velocity
~mm s21! Absortivity

Spot
radius
~mm!

Weld
penetration

~mm!

Weld
width
~mm!

1 3500 8.33 0.30 1.3 1.00 4.00
2 5000 3.33 0.13 1.3 1.10 4.00
3 5000 8.33 0.30 1.3 1.25 5.25
4 3200 3.33 0.30 1.4 1.75 4.00
5 4800 3.33 0.30 1.4 2.50 6.00
6 5000 3.33 0.30 1.3 2.25 6.75
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these calculations has clearly affected similar efforts in the
past.30–34These efforts completely ignored convection in the
weld pool and were based on heat conduction equations.33,34

Recent advances in computational hardware and software
now permit optimization calculations that consider heat
transfer and fluid flow in three dimensions. The approach
adopted here is inherently different from a neural network
technique where the input and output variables are related
through a set of hidden nodes and their relationships do not
have to comply with any physical law. In the research re-
ported in this article, the input welding parameters and the
output weld pool geometry are related by a phenomenologi-
cal framework of the equations of conservation of mass, mo-
mentum, and energy. In effect, the complete procedural
scheme acts as a smart model that identifies a few unknown
parameters in an iterative manner starting from a set of their
initial guessed values exploiting the phenomenological
framework.

Values of effective thermal conductivity and effective
viscosity are estimated through a combination of the
Levenburg–Marquardt method of nonlinear parameter opti-
mization, a numerical heat transfer and fluid flow model, and
a set of experimentally measured weld pool dimensions. The
optimization algorithm minimizes the error between the pre-
dicted and the experimentally observed penetration and the
weld width included in Table I for six laser welds.35 The
chemical compositions of the steels used are presented35 in
Tables II and III. The thermophysical properties used in the
calculations are given35 in Tables IV and V. The welding
conditions presented in Table III show various values of laser
power, spot diameter, absorptivity, and welding speed used.
In order to include these variations, a nondimensional repre-
sentation of the effective heat input that considers the com-
bined contribution of the laser beam characteristics~e.g., la-
ser power and the spot size! and welding parameters~e.g.,
welding speed! is formed as

NHI5

Ph

pr b
2
•v

rCPS~TL2Ta!1rL
, ~1!

whereP is the laser power~W!, h is the absorptivity,r b is
the spot radius~m!, v is the weld velocity~m s21!, CPS is the
specific heat of solid metal~J kg21 K21!, r is the density
~kg m23!, L is the latent heat of fusion~J kg21! andTL and
Ta are the liquidus and ambient temperatures~K!, respec-
tively. In Eq. ~1!, the numerator represents the absorbed heat
per unit volume and the denominator depicts the change in
the enthalpy required to heat a unit volume of the metal from
ambient temperature to liquidus temperature. The computed
values ofNHI for different welds are given in Table VI.

II. HEAT TRANSFER AND FLUID FLOW SIMULATION

The flow of liquid metal in the weld pool in three dimen-
sional Cartesian coordinate system is represented by the fol-
lowing momentum conservation equation:4,21,22,36

r
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wherer is the density,t is the time,xi is the distance along
the i 51, 2, and 3 directions,uj is the velocity component
along thej direction,m is the effective viscosity, andSj is the
source term for thejth momentum equation and is given
as21,22
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TABLE II. Chemical composition~wt %! of steel used for welding experi-
ments~for data set index 1, 2, 3, and 6! ~see Ref. 35!.

C Cr W Mo V Co Mn

0.92 3.88 6.08 4.9 1.73 0 0.26

Si S Ni P Cu Al Fe
0.23 0.001 0.24 0.024 0.20 0.019 Bal.

TABLE III. Chemical composition~wt %! of steel used for welding experi-
ments~for data set index 4 and 5! ~see Ref. 35!.

C Cr W Mo V Co Mn

0.21 0.21 ,0.05 0.05 ,0.02 ,0.05 1.52

Si S Ni P Cu Al Fe
0.36 0.006 0.14 ,0.005 0.14 0.01 Bal.

TABLE IV. Data used for calculations of temperature and velocity fields
~for data set index 1, 2, 3, and 6! ~see Ref. 35!.

Physical property Value

Liquidus temperature,TL (K) 1700.0
Solidus temperature,TS (K) 1480.0
Ambient temperature,Ta (K) 293.0
Density of liquid metal,r ~kg/m3! 8.13103

Thermal conductivity of solid,kS (W m21 K21) 25.08
Thermal conductivity of liquid,kL (W m21 K21) 25.08
Specific heat of solid,CPS(J kg21 K21) 711.0
Specific heat of liquid,CPL (J kg21 K21) 711.0
Temperature coefficient of surface tension,
dg/dT (N m21 K21)

20.531023

Coefficient of thermal expansion,b ~K21! 1.531026

Viscosity of molten iron at 1823 K,mfl (kg m21 s21) 6.731023

TABLE V. Data used for calculations of temperature and velocity fields~for
data set index 4 and 5! ~see Ref. 35!.

Physical property Value

Liquidus temperature,TL (K) 1800.0
Solidus temperature,TS (K) 1760.0
Ambient temperature,Ta (K) 293.0
Density of liquid metal,r ~kg/m21! 7.23103

Thermal conductivity of solid,kS (W m21 K21) 25.08
Thermal conductivity of liquid,kL (W m21 K21) 25.08
Specific heat of solid,CPS(J kg21 K21) 754.0
Specific heat of liquid,CPL (J kg21 K21) 754.0
Temperature coefficient of surface tension,
dg/dT (N m21 K21)

20.531023

Coefficient of thermal expansion,b ~K21! 1.531026

Viscosity of molten iron at 1823 K,mfl (kg m21 s21) 6.731023
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where p is the pressure,f L is the liquid fraction,B is a
constant introduced to avoid division by zero, andC(51.6
3104) is a constant that takes into account mushy zone mor-
phology, andSbj represents both the electromagnetic and
buoyancy source terms. The third term on the right-hand side
represents the frictional dissipation in the mushy zone ac-
cording to the Carman–Kozeny equation for flow through a
porous media.37,38The value of the effective viscosity in Eq.
~2! is a property of the specific welding system and not a
physical property of the liquid metal. Typical values of ef-
fective viscosity are much higher than that of the molecular
viscosity.25,28,29,39The higher value is important, since it al-
lows accurate modeling of the high rates of transport of mo-
mentum in systems with strong fluctuating velocities that are
inevitable in small weld pools with very strong convection
currents.25,28 The pressure field was obtained by solving the
following continuity equation simultaneously with the mo-
mentum equation:

]~rui !

]xi
50. ~4!

The total enthalpyH is represented by a sum of sensible
heath and latent heat contentDH, i.e., H5h1DH where
h5*CpdT, Cp is the specific heat,T is the temperature,
DH5 f LL, L is the latent heat of fusion, and the liquid frac-
tion f L is assumed to vary linearly with temperature in the
mushy zone4

f L5H 1 T.TL

T2TS

TL2TS
TS<T<TL

0 T,TS

, ~5!

whereTL and TS are the liquidus and solidus temperature,
respectively. The thermal energy transport in the weld work-
piece can be expressed by the following modified energy
equation:34
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wherek is the thermal conductivity. In the liquid region, the
value of the thermal conductivity in Eq.~6! is taken as the
effective thermal conductivity which is a property of the spe-
cific welding system and not a physical property of the liquid

metal. Typical values of effective thermal conductivity are
much higher than that of the thermal conductivity of the
liquid. The higher value is important, since it allows accurate
modeling of the high rates of transport of heat in systems
with strong fluctuating velocities that are inevitable in small
weld pools with very strong convection currents.39 Since the
weld is symmetrical about the weld center line only half of
the workpiece is considered. The weld top surface is as-
sumed to be flat. The velocity boundary condition is given
as4

m
]u

]z
5 f L

dg

dT

]T
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,

m
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5 f L

dg
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]T

]y
, ~7!

w50,

whereu, v, andw are the velocity components along thex, y,
andz directions, respectively, anddg/dT is the temperature
coefficient of surface tension. As shown in Eq.~7!, theu and
v velocities are determined from the Marangoni effect. The
w velocity is equal to zero since there is no flow of liquid
metal perpendicular to the pool top surface. The heat flux at
the top surface is given as

k
]T

]z
5

dPh

pr b
2 expF2

d~x21y2!

r b
2 G2se~T42Ta

4!

2hc~T2Ta!, ~8!

wherer b is the laser beam radius,d is the beam distribution
factor, P is the laser beam power,h is the absorptivity,s is
the Stefan–Boltzmann constant,hc is the heat transfer coef-
ficient, andTa is the ambient temperature. The first term on
the right-hand side is the heat input from the heat source,
defined by a Gaussian heat distribution. The second and third
terms represent the heat loss by radiation and convection,
respectively. The boundary conditions are defined as zero
flux across the symmetric surface~i.e., aty50) as4,21

]u

]y
50, v50,

]w

]y
50, ~9!

]h

]y
50. ~10!

At all other surfaces, temperatures are set at ambient tem-
perature and the velocities are set to be zero.

III. OPTIMIZATION PROCEDURE

Optimization algorithms commonly utilized for param-
eter estimation include the Levenberg–Marquardt method,
conjugate gradient technique, and conjugate gradient method
with adjoint problem. These methods have been discussed
elsewhere.40–42 The Levenberg–Marquardt method involves
minimization of an appropriately constructed objective func-
tion that depicts the error between the estimated and the cor-
responding known values of dependent variables. The itera-
tive solution procedure resembles the typical nonlinear least
square technique and is principally dependent on the sensi-

TABLE VI. Nondimensional value related to heat input.

Data set
index

Laser
power
~W!

Weld
velocity
~mm s21! Absorptivity

Spot
radius
~mm! NHI

1 3500 8.33 0.30 1.3 2.9
2 5000 3.33 0.13 1.3 4.1
3 5000 8.33 0.30 1.3 4.5
4 3200 3.33 0.30 1.4 6.6
5 4800 3.33 0.30 1.4 9.9
6 5000 3.33 0.30 1.3 10.4
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tivity of the dependent variables to the unknown independent
variables. The conjugate gradient technique is similar to the
Levenberg–Marquardt method in the aspects of the objective
function and sensitivity calculation. However, the iterative
procedure in conjugate gradient technique involves the cal-
culation of a suitable step size for each iteration along a
direction of descent. The direction of descent is obtained as a
linear combination of the negative gradient direction at the
current iteration and the same obtained in the previous itera-
tion. The conjugate gradient method with adjoint problem is
utilized if the unknown parameters can be expressed in terms
of the coefficients of a known trial function. This method
uses a Lagrange multiplier, and does not require calculation
of the sensitivity matrix that is inherent in both the previous
methods. Although both the Levenberg–Marquardt method
and the conjugate gradient technique are suitable for the
problem considered in the present work, the first one has
been adopted here. The suitability of the Levenberg–
Marquardt method for the optimization of multiple unknown
variables in the case of gas tungsten arc welding process has
already been reported in a previous work.27

The Levenberg–Marquardt optimization technique mini-
mizes an objective function that depicts the difference be-
tween the computed and measured values of one or more
dependent or target variables. Considering the penetration
and the width of the weld pool as the dependent variables, an
objective function,O( f ), is defined as

O~ f !5 (
m51

M S pm
c 2pm

obs

pm
obs D 2

1 (
m51

M S wm
c 2wm

obs

wm
obs D 2

5 (
m51

M

~pm* 21!21 (
m51

M

~wm* 21!2, ~11!

wherepm
c and wm

c are the penetration and the width of the
weld pool calculated by the numerical heat transfer and fluid
flow model, respectively, andpm

obs and wm
obs are the corre-

sponding experimental measurements.pm* andwm* are nondi-
mensional and indicate the extent of over- or underprediction

for penetration and weld width, respectively. The subscriptm
in each of the variables in Eq.~11! corresponds to a specific
weld in a series ofM number of total welds (M56, Table I!.
In Eq. ~11!, f represents a given set of independent unknown
parameters, which strongly influence the dependent vari-
ables,pm* andwm* , and hence, the objective function,O( f ).
In the present work,f consists of effective thermal conduc-
tivity and effective viscosity of the liquid metal~in weld
pool! taken in nondimensional form

$ f %[$ f 1 f 2%[$k* m* %[S keff

kL

meff

mfl
D . ~12!

In Eq. ~12!, kL , mfl , keff , andmeff , respectively, refer to
thermal conductivity of liquid metal at melting temperature,
viscosity of molten iron at 1823 K, effective thermal conduc-
tivity, and effective viscosity of liquid metal in weld pool.
Assuming thatO( f ) is continuous and has a minimum value,
the optimum values of the two unknowns are obtained by
differentiating Eq.~11! with respect to each unknown param-
eter and equating each of the derivatives to zero

F]O~ f !

] f i
G

i 51,2

52F (
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M

~pm* 21!
]pm*

] f i

1 (
m51

M

~wm* 21!
]wm*

] f i
G

i 51,2

50, ~13!

where f i represents any one of the two unknowns as indi-
cated in Eq.~12!. The partial derivatives ofpm* andwm* with
respect tof i in Eq. ~13! are generally referred to as the sen-
sitivity of the computed weld width and penetration with
respect to the unknowns. The values of these sensitivity
terms are computed numerically by running the numerical
heat transfer and fluid flow code and subsequently, calculat-
ing the derivatives. For example, the sensitivity of non-
dimensional penetration,pm* , with respect tok* , is calcu-
lated from the following relation:

]pm*

]k*
5

pm* ~k* 1dk* ,m* ,other known parameters!2pm* ~k* ,m* ,other known parameters!

dk*
, ~14!

wheredk* is very small compared withk* . The expression
~14! indicates that computation of each sensitivity term
needs two executions of the numerical heat and fluid flow
analysis.

Thus, the optimization procedure, and in turn, the overall
smart model, intends to solve Eq.~13! to obtain a specific
solution of the unknown parameters. In other words, the op-
timization routine targets to achieve the final set ofk* and
m* using which the computedpm

c andwm
c will be sufficiently

close to the correspondingpm
obs and wm

obs for all M sample
welds. Eventually, bothpm* andwm* will move close to 1 and
Eq. ~13! will thus be satisfied. However,pm

c andwm
c in Eq.

~13! are obtained from the solution of the numerical heat
transfer and fluid flow model for a certain set ofk* andm* ,
and these unknown parameters do not explicitly appear in
Eq. ~13!. Hence, this equation cannot provide a direct solu-
tion for k* andm* . As shown in the appendix, considerable
rearrangements of the equations are necessary so that they
can serve as a basis for an iterative scheme to evaluate the
unknown parameters,k* and m* . The final equations take
the following form:

@S#$D f k%52$S* %, ~15!

whereD f k are the increments of thef values afterk iteration;
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@S# and$S* % are defined in the appendix by Eqs.~A16! and
~A17!, respectively. The iterations are continued until the
objective function defined by Eq.~11! is minimized. The
solution methodology is discussed in details in the appendix.

IV. RESULTS AND DISCUSSION

The sensitivity of the computed weld pool dimensions
with k* and m* was studied for each of the six welding
conditions presented in Table I. Several heat transfer and
fluid flow calculations were carried out with different com-
binations ofk* and m* for each set of welding conditions.
Figures 1~a! and 1~b! show a number of isocontours ofpm*
and wm* , respectively, as a function ofk* and m* corre-
sponding to the first data set in Table I. It is observed in Fig.
1~a! that pm* increases ask* or m* increases. The increasing
trend in pm* with k* dampens slowly whenk* is increased
beyond a value of 7.0. Similarly, ask* increases beyond a
value of 5.0,pm* becomes almost insensitive tom* . Figure
1~b! depicts thatwm* decreases ask* or m* increases. Ask*
increases beyond 7.0,wm* becomes almost insensitive tom*
and the influence ofk* on wm* reduces considerably.

The influence ofk* andm* on the computed weld pool
dimensions can be explained as follows. An increase ink*
promotes higher heat conduction within the weld pool. The
dimensionless penetrationpm* increases with increase ink*
because higher thermal conductivity facilitates heat transport
in the downward direction. However, the higher the en-
hanced thermal conductivity, the lower will be the resulting

surface temperature gradient. Consequently, the radial con-
vective heat transport is decreased resulting in decreasedwm*
at higherk* . On the other hand, an increase inm* reduces
surface velocity, since a more viscous fluid flows slowly un-
der the same driving force. The reduced surface velocity
leads to lower radial convective heat transfer, lower com-
puted weld width, and slightly higher peak temperature. The
increase in peak temperature enhances downward heat con-
duction and leads to slightly higher computed penetration,
pm* . At high values ofk* , conduction is the main mechanism
of heat transfer and a change inm* cannot significantly alter
the surface velocity or the peak temperature. Thus, the com-
puted penetration or weld width do not change significantly
with m* at high values ofk* as observed in Figs. 1~a! and
1~b!.

Figures 1~a! and 1~b! show that unit valuespm* andwm*
can be achieved with multiple combinations ofm* and k* .
The values of the error in nondimensional,O( f ) is plotted
next in Fig. 2 as a function ofm* andk* . Figure 2 indicates
that a specific combination ofm* and k* to achieve mini-
mum values ofO( f ). However, two features are to be noted
here. Figure 2 represents a heat input ofNHI52.9 in Table
VI. There is no guarantee that the same combination ofm*
andk* will lead to a minimum error corresponding to other
values ofNHI . Considering the selected combinations ofm*
andk* , the turbulent Prandtl number may be defined as

Prr5
mTCPL

kT
, ~16!

wheremeff5mfl1mT andkeff5kL1kT ; mT andkT are the tur-
bulent viscosity and conductivity to account for the fluctuat-
ing fluid velocity within the weld pool. Since PrT is
commonly24,25 prescribed as 0.9, a dashed line is plotted in
Fig. 2 corresponding to PrT50.9. This line provides an ad-
ditional guideline for the selection of solutions.

Figure 3 presents values of the objective function,O( f ),
as a function ofm* andk* corresponding toNHI59.87 along
with a dashed line representing PrT50.9. Comparison of
Figs. 2 and 3 show that in order to accurately calculate weld
dimensions, higher values ofm* andk* are needed at higher
heat inputs. Similar calculations for other values ofNHI fur-
ther confirm this trend. The calculations demonstrate the un-

FIG. 1. Influence ofk* andm* on ~a! pm* and~b! wm* . Welding parameters:
P53500 W, h50.30,v58.33 mm/s (NHI52.9).

FIG. 2. Influence of k* and m* on O( f ). Welding parameters:P
53500 W, h50.30,v58.33 mm/s (NHI52.9).
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derlying principle thatm* andk* in weld pool are dependent
on heat input. Their values depend on the welding conditions
rather than the nature of the liquid metal. The values ofk*
andm* can be expressed as

k* 5C11C2 NHI ,
~17!

m* 5C31C4 NHI ,

whereC1 and C3 are the minimum values of the effective
conductivity and effective viscosity, respectively, andC2 and
C4 constants. Thus, the objective function,O( f ), is now a
function of C1 , C2 , C3 , and C4 as they will determine a
specific set ofk* andm* for a specific heat input. Further-
more, sincek* andm* equals 1 at low values of heat input,
values of bothC1 andC3 are one. The optimization routine
can be used to estimate the most suitable values ofC2 and
C4 that will provide a set ofk* andm* for eachNHI . Hence,
Eq. ~12! is modified as

$ f %[$ f 1 f 2%[$C2 C4%. ~18!

Furthermore, the optimization routine will be guided by the
fact that the desired set ofk* and m* for eachNHI should
have a PrT close to 0.9.

To start the optimization calculation, a set of initial
guessed values are necessary forC2 andC4 . The final results
were not affected by the choice of the initial guessed values.
The values of these three sets of initial guessed values forC2

andC4 and the corresponding initial values ofk* andm* are
presented in Table VII. Figures 4–6 show the results of the

calculations for three sets of initial guessed values and Fig. 7
shows that how,O( f ), the error, reduces with number of
iterations. In Figs. 4–6, instead of presenting the changes in
values ofC2 andC4 with a number of iterations, the corre-
sponding patterns ink* andm* with respect toNHI are plot-
ted at different iterations. Figure 4~a! and 4~b! show howk*
andm* change withNHI after various iterations. The linearly
increasing trend in both cases stabilizes after about six itera-
tions. The values ofk* range from 3.4 atNHI52.9 to a value
of 9.7 atNHI510.4. The corresponding values ofm* are set
from 11.8 atNHI52.9 to a value of 39.6 atNHI510.4. The
stabilization of error with the initial guessed values after six
iterations is also evident in Fig. 7. Similarly, Figs. 5~a! and
5~b! depict the trends ink* and m* with respect toNHI at

FIG. 3. Influence of k* and m* on O( f ). Welding parameters:P
54800 W, h50.30,v53.33 mm/s (NHI59.9).

FIG. 4. Progress of calculation with first set of initial guessed values. The
guessed values are presented in Table VII.

TABLE VII. Final values ofk* andm* for all data sets with different initial guesses.

Data
set

index

Initial guess
~1st set!

Initial guess
~2nd set!

Initial guess
~3rd set! Final values

C2 :0.1; C4 :0.1 C2 :1.0; C4 :1.0 C2 :2.0; C4 :2.0 C2 :0.84; C4 :3.72

k* m* k* m* k* m* k* m*

1 1.29 1.29 3.90 3.90 6.80 6.80 3.43 11.80
2 1.41 1.41 5.14 5.14 9.29 9.29 4.47 16.40
3 1.45 1.45 5.49 5.49 9.98 9.98 4.76 17.71
4 1.66 1.66 7.58 7.58 14.16 14.16 6.52 25.48
5 1.99 1.99 10.87 10.87 20.74 20.74 9.29 37.72
6 2.04 2.04 11.37 11.37 21.73 21.73 9.70 39.58
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different iterations with the second set of initial guessed val-
ues. The final trends in bothk* andm* have remained same
as obtained previously. Both Figs. 5~a! and 5~b! show no
changes in the trends ofk* and m* after four iterations.
Figure 6 shows that with the third set of initial guessed val-
ues, the trends ink* andm* with respect toNHI at different
iterations and the final values ofk* and m* for different
values ofNHI remain same as previous. Figures 6 and 7 also
indicate that the optimum solution with the third set of initial
guessed values is achieved after four iterations after which
the error does not improve. The final values ofC2 andC4 as

well as the corresponding combinations ofk* and m* for
eachNHI are presented in Table VII. PrT in each case also
remains close to 0.9. The final form of Eq.~17! can be pre-
sented as

k* 51.010.84 NHI ,
~19!

m* 51.013.72 NHI .

The choice of initial values did not affect howk* and
m* varied withNHI . However, the initial values affected the
total number of iterations needed to achieve converged solu-
tion. It is useful to look into the number of heat transfer and
fluid flow analyses needed per iteration. The number of runs
is equivalent to the number of unknowns multiplied by the
number of sample welds~for sensitivity calculation! plus the
number of welds~for error verification!. Therefore, it is use-
ful to reduce even a single iteration by appropriate choice of
the initial guessed values. The computed values ofpm* and
wm* using the optimized values fork* andm* corresponding
to all values ofNHI are next plotted in Fig. 8. Although a
fairly satisfactory agreement is obtained between the com-
puted and measured weld dimensions, the weld dimensions
are slightly overpredicted for the material composition pre-
sented in Table II. It can be observed from Figs. 1~a! and
1~b! that pm* tends to be one at lower values ofk* and m*

FIG. 5. Progress of calculation with second set of initial guessed values. The
guessed values are presented in Table VII.

FIG. 6. Progress of calculation with third set of initial guessed values. The
guessed values are presented in Table VII.

FIG. 7. Progress ofO( f ) with three sets of initial guessed values. The
guessed values are presented in Table VII.

FIG. 8. Computed values ofpm* andwm* using the optimized set ofk* and
m* for all values ofNHI . Data used in the calculation are given in Tables IV,
V, and VII.
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while wm* tends to be 1 at higher values ofk* and m* and
both pm* and wm* are slightly higher than 1 for intermediate
values. Although the smart model attempts to find the total
composite error, since the relations between weld dimensions
with k* andm* are not linear, the errors in bothpm* andwm*
may not be equal in magnitude.

A comparison between the computed weld pool geom-
etry and the experimentally measured geometry is presented
in Fig. 9. The calculated results also show the temperature
contours and the computed velocity field. The computed ve-
locity field shows that the liquid metal is transported from
the middle of the pool outwards to the periphery due to nega-
tive temperature coefficient of surface tension.

The values ofk* andm* obtained in this work are in the
range of enhancement factors reported in the literature. For
example, an effective value of 30 for bothk* and m* was
reported to result in best prediction of GTA weld
dimensions.25 A value of 100 for bothk* and m* was also
indicated to be possible for welds with high depth of
penetration.25 When thek–e turbulence model with a spa-
tially varying effective viscosity was used, a maximum value
of 16 for m* was reported for stationary GTA weld pool.24

Although the relationships betweenNHI andk* andm* de-
termined in this work are valid for the specific conditions of
welding considered here, two important issues are to be
noted. First, the values of bothk* and m* are needed for
phenomenological modeling, i.e., for the calculation of weld
pool geometry and cooling rate using numerical heat transfer
and fluid flow model. Second, because of organized research
in recent years, there is now a growing quantitative knowl-
edge base for fusion welding, consisting of data, mecha-
nisms, models, rules, and laws applicable specifically for fu-
sion welding. Significant expansion of this knowledge base
is necessary for it to serve as a basis for the control of weld-
ing processes aimed at achieving defect free, structurally
sound welds, and eventually transform welding to a main-
stream engineering branch. The development of smart mod-
els of welding, that can determine uncertain welding param-
eters from a limited volume of experimental data, is a
contribution toward expanding this quantitative knowledge
base.

V. SUMMARY AND CONCLUSIONS

A smart model embodying the Levenberg–Marquardt
method of parameter estimation and three-dimensional nu-
merical calculations of heat transfer and fluid flow is devel-
oped here for the estimation of effective thermal conductivity
and effective viscosity in weld pool. Experimental data on
weld penetration and width for six conduction mode laser
welds were used. The computed weld dimensions were
found to be sensitive to both the effective thermal conduc-
tivity and effective viscosity. It is found that the effective
thermal conductivity and effective viscosity depended on the
heat input. The optimum values of both effective thermal
conductivity and effective viscosity were independent of
their initial guessed values. However, their initial choice af-
fected the volume of numerical calculations. The accuracy of
the estimated values was verified using the numerical heat
transfer and fluid flow model and the experimental data.
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APPENDIX

In order to explain the basic concept for the optimization
in details, a simplified system involving one dependent vari-
able and two unknown parameters,f 1 and f 2 , measured un-
der six welding conditions is considered first. Equation~13!
can be written forf 1 and f 2 as

(
m51

6 F ~pm* 21!
]pm*

] f 1
G50, ~A1!

(
m51

6 F ~pm* 21!
]pm*

] f 2
G50. ~A2!

The values of the two unknowns,f 1 and f 2 , cannot be di-
rectly obtained from the earlier equations since they do not
appear explicitly in these equations. However, the dependent
variablepm* can be expanded using the Taylor’s series expan-
sion to explicitly contain values of increments andf 1 and f 2 .
Considering two successive iterations ofpm* and taking only
the first order terms

~pm* !k115~pm* !k1
]~pm* !k

] f 1
D f 1

k1
]~pm* !k

] f 2
D f 2

k , ~A3!

whereD f 1
k andD f 2

k are two unknown increments off 1 and
f 2 . All other terms on the right-hand side of Eq.~A3! are
considered to be known. The value ofpm* at the end of (k
11)th iteration, (pm* )k11, is unknown sinceD f 1

k and D f 2
k ,

and hence,f 1 and f 2 after (k11)th iteration are unknown. It
should be noted here thatpm* is always considered to be
evaluated through the numerical heat transfer and fluid flow
simulation using a corresponding set off 1 and f 2 and other
known parameters.

FIG. 9. Experimentally determined and computed weld pool geometry. The
length of the black arrow shows the magnitude of the velocities and the solid
lines show the isotherms. Welding parameters:P53500 W, h50.30, and
v58.33 mm/s (NHI52.9); Other data used in the calculations are given in
Tables IV and VII.
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The Eqs.~A1! and ~A2! are rewritten replacingpm* by
(pm* )k11 as

(
m51

6 H @~pm* !k1121#
~]pm* !k11

] f 1
J 50, ~A4!

(
m51

6 H @~pm* !k1121#
~]pm* !k11

] f 2
J 50. ~A5!

Substituting (pm* )k11 by the terms on the right-hand side of
equation~A3!, both equations~A4! and~A5! are rewritten as

(
m51

6 H F ~pm* !k1
]~pm* !k

] f 1
D f 1

k1
]~pm* !k

] f 2
D f 2

k21G

3

]F ~pm* !k1
]~pm* !k

] f 1
D f 1

k1
]~pm* !k

] f 2
D f 2

kG
] f 1

J
50, ~A6!

(
m51

6 H F ~pm* !k1
]~pm* !k

] f 1
D f 1

k1
]~pm* !k

] f 2
D f 2

k21G

3

]F ~pm* !k1
]~pm* !k

] f 1
D f 1

k1
]~pm* !k

] f 2
D f 2

kG
] f 2

J
50. ~A7!

Neglecting higher order differentials such as
]/] f 1$@](pm* )k/] f 1#D f 1

k%, Eqs.~A6! and~A7! are simplified
as

(
m51

6 H F ~pm* !k1
]~pm* !k

] f 1
D f 1

k1
]~pm* !k

] f 2
D f 2

k21G ]~pm* !k

] f 1
J 50,

~A8!

(
m51

6 H F ~pm* !k1
]~pm* !k

] f 1
D f 1

k1
]~pm* !k

] f 2
D f 2

k21G ]~pm* !k

] f 2
J 50.

~A9!

Equations~A8! and ~A9! can be rearranged as

(
m51

6 F]~pm* !k

] f 1

]~pm* !k

] f 1
GD f 1

k1 (
m51

6 F]~pm* !k

] f 1

]~pm* !k

] f 2
GD f 2

k

52 (
m51

6 H ]~pm* !k

] f 1
@~pm* !k21#J , ~A10!

(
m51

6 F]~pm* !k

] f 2

]~pm* !k

] f 1
GD f 1

k1 (
m51

6 F]~pm* !k

] f 2

]~pm* !k

] f 2
GD f 2

k

52 (
m51

6 H ]~pm* !k

] f 2
@~pm* !k21#J . ~A11!

Equations~A10! and ~A11! can also be expressed as

S11D f 1
k1S12D f 2

k52S1
p , ~A12!

S21D f 1
k1S22D f 2

k52S2
p . ~A13!

Equations~A12! and ~A13! can be expressed in a matrix
form as

FS11 S12

S21 S22
G H D f 1

k

D f 2
kJ 52H S1

p

S2
pJ ~A14!

or

@S#$D f k%52$S* %, ~A15!

where

@S#5FS11 S12

S21 S22
G

5F (
m51

6 ]~pm* !k

] f 1

]~pm* !k

] f 1
(

m51

6 ]~pm* !k

] f 1

]~pm* !k

] f 2

(
m51

6 ]~pm* !k

] f 2

]~pm* !k

] f 1
(

m51

6 ]~pm* !k

] f 2

]~pm* !k

] f 2

G
~A16!

and

$S* %5H S1
p

S2
pJ 55 (

m51

6 ]~pm* !k

] f 1
@~pm* !k21#

(
m51

6 ]~pm* !k

] f 2
@~pm* !k21#6 . ~A17!

Thus, Eqs.~A1! and ~A2! are modified to Eq.~A14!
where the two unknown incremental termsD f 1

k andD f 2
k are

explicitly defined in terms of known quantities. All other
terms in Eq.~A14! are known at the end ofkth iteration. The
variablesD f 1

k and D f 2
k are determined from the solution of

Eq. ~A14!. The unknown parametersf 1 and f 2 after (k11)th
iteration are obtained from the following relations:

f 1
k115 f 1

k1D f 1
k ,

~A18!
f 2

k115 f 2
k1D f 2

k .

The updated values off 1
k11 and f 2

k11 are used next to evalu-
ate (pm

c )k11 through the numerical heat transfer and fluid
flow simulation. Next,O( f ) is calculated from the following
equation:

O~ f !5 (
m51

6

@~pm* !k1121#250. ~A19!

The value ofO( f ) calculated from Eq.~A19! is compared
with that calculated previously afterkth iteration. Values of
f 1 and f 2 are assumed to have converged when the value of
O( f ) calculated from Eq.~A19! after (k11)th iterations is
found to be smaller than a predefined small number.

For two dependent variables,pm* andwm* , the expression
~A16! is modified as

@S#5FS11 S12

S21 S22
G , ~A20!

where
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Si j 5 (
m51

6 F]~pm* !k

] f i

]~pm* !k

] f j
1

]~wm* !k

] f i

]~wm* !k

] f j
G ;

for i , j 51 – 2. ~A21!

The indicesi and j refer to the number of unknown param-
eters. The expression~A17! will be modified as

$S* %5H S1
pw

S2
pwJ ~A22!

with

Si
pw5 (

m51

6 H ]~pm* !k

] f i
@~pm* !k21#1

]~wm* !k

] f i
@~wm* !k21#J ;

for i 51 – 2. ~A23!

The unknown matrix$D f k% in Eq. ~A15! will remain same as

$D f k%5H D f 1
k

D f 2
kJ . ~A24!

The expression~A18! will also remain same as number of
unknowns remains two only. Furthermore, the sensitivity
terms such as](pm* )k/] f i or ](wm* )k/] f i ~for i 51 – 2) in the
expressions~A16! as well as in~A21! often tend to be very
small as the values of the unknown parametersf 1 and f 2

move close to the optimum values. As a result, the matrix@S#
may tend to become a singular matrix. To avoid any numeri-
cal instability, Eq.~A15! is further modified following the
Levenburg–Marquardt method as

~@S#1lI !$D f k%52$S* %, ~A25!

where l is a scalar damping coefficient which is usually
taken as 0.001.I is a diagonal matrix defined as42

I5FS11 0

0 S22
G . ~A26!

Hence, Eq.~A25! can be rewritten as

S FS11 S12

S21 S22
G1lFS11 0

0 S22
G D H D f 1

k

D f 2
kJ 52H S1

p

S2
pJ . ~A27!

The order ofI will always be same as that of the matrix@S#.
Thus, the productlI in Eq. ~A25! ensures that the left hand
term in Eq.~A26! will remain nonzero even if the determi-
nant of the matrix@S# is zero. The sequence of steps involved
in the modeling is shown in Fig. 10.
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