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Abstract

Numerical heat transfer models of gas metal arc (GMA) fillet welding do not always predict correct temperature

fields and fusion zone geometry. The inaccuracy results, to a large extent, due to the difficulty in correctly specifying

several input parameters such as arc efficiency from scientific principles. In order to address this problem, a heat transfer

model is combined with an optimization algorithm to determine several uncertain welding parameters from a limited

volume of experimental data. The resulting smart model guarantees optimized prediction of weld pool penetration,

throat and leg-length within the framework of phenomenological laws. A boundary fitted coordinate system was used

to account for the complex fusion zone shape. The weld pool surface profile was calculated by minimizing the total

surface energy. Apart from the direct transport of heat from the welding arc, heat transfer from the metal droplets

was modeled considering a volumetric heat source. The Levenberg–Marquardt and two versions of conjugate gradient

method were used to calculate the optimized values of unknown parameters. An appropriate objective function that

represented the difference between the calculated and experimental values of the penetration, throat and leg-length

was minimized. The calculated shape and size of the fusion zone, finger penetration characteristic of the GMA welds

and the solidified free surface profile were in fair agreement with the experimental results for various welding

conditions.

� 2004 Published by Elsevier Ltd.
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1. Introduction

In the previous two decades, application of transport

phenomena has resulted in improved understanding of
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fusion welding processes and welded materials [1–4].

Numerical calculations have provided useful informa-

tion about the thermal cycles and weld pool geometry

in both gas metal arc [5–7] and laser welding [8,9]. Com-

puted temperatures have been used to understand the

evolution of phase composition [10,11], grain structure

[12,13], inclusion structure [14,15], and weld metal com-

position change owing to both evaporation of alloying

elements and dissolution of gases [16,17]. However,

these powerful numerical tools have been used mostly
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Nomenclature

f matrix representing four unknown parame-

ters in non-dimensional form

Df matrix representing change in f

f̂ matrix with the values estimated for the

parameters

S, S* matrices containing sensitivity terms

V covariance matrix of the estimated

parameters

k unit vector in z-direction

nb unit normal vector to the bottom surface

nt unit normal vector to the top surface

kVbk norm of the normal vector to the bottom

surface

kVtk norm of the normal vector to the top surface

A constant term in assumed linear efficiency

function

B slope of the variation in assumed linear effi-

ciency function

Cij correlations coefficients

Cp specific heat

d effective height of the volumetric heat source

di direction of descent for the ith variable

eRMS root-mean-square (RMS) error

f droplet transfer frequency

fd ratio of the radii of droplet volumetric cylin-

drical heat source and the droplet

fe enhancement factor

fl liquid fraction

Fb the heat flux at the bottom surface

Ft heat flux at the top surface

g gravitational constant

h sensible heat

hv height of the cylindrical heat source

I current

J Jacobian of the transformation

k thermal conductivity

l leg-length of the weld pool

L latent heat of fusion

M number of available measurements data

N number of unknown variables

O(f) objective function

p penetration of the weld pool

Pa arc pressure

Qd total sensible heat input from the metal

droplets

rb heat distribution parameter

rd droplet radius

rw wire radius

Sv power density of a volumetric heat source

t throat of the weld pool

Dt interval between two successive drops

T temperature

Ta ambient temperature

Td droplet temperature

Tl liquidus temperature

Ts solidus temperature

Uw welding speed

vd droplet impingement velocity

V voltage

wf wire feeding rate

x, y, z denotes the physical space

xv distance traveled by the center of the slug

between the impingement of two successive

droplets

z0 z location of the workpiece top surface

Greek symbols

a thermal diffusion coefficient

bk search step size

ck conjugation coefficient

c surface tension of the molten metal

k Lagrangian multiplier

kk scalar damping co-efficient

Xk diagonal matrix

/ vertical elevation of top surface with respect

to an arbitrarily chosen horizontal plane.

/s solidified surface profile

q density of the workpiece material

qw density of the electrode wire

r Stefan–Boltzmann constant

rm standard deviations in the measurements

n, g, f computational domain

v2
N value of chi-square distribution with N-

degrees of freedom

Superscripts

c calculated by the numerical heat transfer

and fluid flow model

e experimentally determined values

k number of iterations

Subscript

m number of the measurement
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for research rather than in the industry [18]. A major dif-

ficulty is that some of the input parameters of the model

such as the arc efficiency cannot be prescribed based on
scientific principles. As a result, the model predictions

may not match experimental data because of the uncer-

tainty in the values of some input parameters. In order
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to overcome this difficulty, new models are needed that

can assure correct prediction of temperature fields and

fusion zone geometry.

Fusion welding processes are complex and several

component physical processes take place simultaneously

during welding. For example, during GMA welding, the

work piece receives heat from the arc as well as from the

metal droplets formed from the melting of the electrode.

The measured values of arc efficiency vary significantly

since minor changes in the surface conditions of the

workpiece and welding variables affects its value. As a

result, the value of the arc efficiency cannot be pre-

scribed with certainty. The transport of the hot metal

droplets into the weld pool results in a special shape of

the fusion zone often referred as finger penetration

[5,19–21]. Previous research has shown that a cylindrical

volumetric heat source can adequately represent the

time-averaged rate of heat transfer due to impingement

of droplets in the spray mode of droplet transfer

[5,19,20]. However, the radius of the cylindrical volu-

metric heat source is specified with trial and error. In

complex welding systems, it is customary to take into ac-

count the effects of convective heat transport through

the use of enhanced thermal conductivity [18,22–25]

which is adjusted through trial and error so that the

computed temperature profiles agree with experimental

data. The value of enhanced conductivity is a property

of the specific welding system and not an inherent phys-

ical property of the liquid metal. In summary, currently

there is no unified basis to accurately prescribe the val-

ues of arc efficiency, enhanced thermal conductivity

and the diameter of the cylindrical heat source.

Although the values of these variables are often assigned

from past experience, there is no fundamental scientific

basis for assigning these values. If the values of these un-

known parameters can be determined from a limited

number of experiments, model predictions can be

reliable.

The goal of the present work is to develop a model

which includes an interactive combination [26–28] of

an optimization algorithm, a heat transfer sub-model

and a set of experimentally measured weld pool penetra-

tion, throat and leg-length. The optimization algorithm

minimizes the error between the predicted and the exper-

imentally observed penetration, throat and the leg-

length of a fillet weld pool considering the sensitivity

of these geometric parameters to each of the unknown

welding variables. The complete procedure acts as a

smart model that identifies these parameters in an itera-

tive manner starting from a set of their initial guessed

values. The input welding parameters and the output

weld pool geometry are related by a phenomenological

framework of the equations of conservation of mass

and energy. Thus, the approach adapted here is inher-

ently different from the neural network technique where

the input and output variables are related through a set
of hidden nodes and their relationships do not have to

comply with any physical law.
2. Direct model

By using a coordinate system attached with the

heat source, the following energy conservation equa-

tion can be written in the Cartesian coordinate system

[5,29]:

r � ðarhÞ � qUw

oh
ox

� qUwL
ofl
ox

þ Sv ¼ 0 ð1Þ

where Sv is volumetric heat source whose calculation is

discussed in a subsequent section. The sensible heat h

is expressed as h = �CPdT. The liquid fraction fl is as-

sumed to vary linearly [5,29] with temperature for

simplicity

fl ¼
1 T P T l

T�T s

T l�T s
T s < T < T l

0 T 6 T s

8><
>: ð2Þ

Accurate calculation of heat transfer with deformable

weld pool surface requires the use of non-orthogonal

deformable grid to fit the surface profile. Therefore,

the energy conservation equation was transformed from

the Cartesian to curvilinear coordinate system. The

physical space is denoted by (x,y,z), and the computa-

tional domain is represented by (n,g,f). Fig. 1 shows

the transformation from the L-shape physical domain

to a simple rectangular computational domain. Only

the z-direction in the physical domain is transformed

into the f direction in the computational domain, while

n and g directions remain the same as x and y direc-

tions, respectively. The transformed energy conservation

equation in the curvilinear coordinate system is given

[5] as
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where coefficients q13 to q33 are defined as
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Fig. 1. Schematic plot showing the coordinate transformation

from the physical (x,y,z) to the computational domain (n,g,f)
where the transformed energy conservation equation is numer-

ically solved: (a) physical domain, and (b) computational

domain. Symbol ~V t is a normal vector to the top surface. The

shadowed area, AFW, is equal to the amount of fed wire per unit

length.

Fig. 2. Schematic diagram of droplet volumetric heat source.

All the variables are defined in the nomenclature.
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The heat flux at the top surface, Ft, is given as [5]

arh � nt ¼ F t

¼ IV g
2pr2b

exp � x2h þ y2
h

2r2b

� �
ðk � ntÞ

� reðT 4 � T 4
aÞ � hcðT � T aÞ ð5Þ

In Eq. (5), the first term on the right hand side is the heat

input from the arc defined by a Gaussian heat distribu-

tion. The second and third terms represent the heat loss

by radiation and convection, respectively. In the curvi-
linear coordinate, Eq. (5) can be transformed into the

following equation [5]:

oh
of

����
t

¼

F tkVtk
Ja

þ oh
on

zn þ
oh
og

zg

Jðz2n þ z2g þ 1Þ ð6Þ

where Vt is a normal vector to the top surface defined as
of
ox
~iþ of

oy
~jþ of

oz
~k For the bottom surface, the heat flux, Fb,

is given as

arh � nb ¼ F b ¼ hcðT � T 0Þ ð7Þ

Similar to the heat flux equation at the top surface, Eq.

(5) is transformed to the following expression in the cur-

vilinear coordinate [5]:

oh
of

����
b

¼

F bkVbk
Ja

þ oh
on

zn þ
oh
og

zg

Jðz2n þ z2g þ 1Þ ð8Þ

The temperatures at other surfaces, i.e., east, west,

south, and north surfaces are set to the ambient

temperature.

For the calculation of the heat transfer from the me-

tal droplets, the effective height of the volumetric heat

source, d, is calculated from the following equation

based on energy balance [5,19,20]:

d ¼ hv � xv þ fdrd ð9Þ

The variables d, hv, xv and fdrd are shown in Fig. 2.

The total sensible heat input from the metal droplets,

Qd, is given as [5]

Qd ¼ qwpr2wwfCpðT d � T lÞ ð10Þ
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Fig. 3. Nomenclature of the weld geometry in GMA fillet weld.
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The values of hv and xv in Eq. (9) are calculated

based on energy balance as [5,19,20]

hv ¼ � c
rdqg

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

rdqg
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þ rdv2d
3g

" #vuut
0
@

1
A ð11Þ

xv ¼ hv þ
c

rdqg

� �
1� cos

g
hv

� �1=2

Dt

" #( )
ð12Þ

As shown in Eqs. (11) and (12), calculation of the

dimensions of the volumetric heat source requires the

knowledge of the droplet transfer frequency, radius

and impingement velocity. Rhee [30] and Jones [31]

found that the droplet frequency was strongly affected

by the welding current under the conditions of this

investigation. In this study, the droplet transfer fre-

quency is calculated by fitting their experimental results

into a sigmoid function combined with a quadratic func-

tion. The resulting equation is given as

f ¼ �243:44

1þ exp
I � 291:086

6:06437

� �þ 323:506� 0:874	 I

þ 0:0025	 I2 ðHzÞ ð13Þ

With the knowledge of the droplet transfer frequency,

assuming that the droplets are spherical, the droplet

radius, rd, is given by

rd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
r2wwf

�
f

3

s
ð14Þ

From the computed values of Qd, rd and d, the time-

averaged power density of the volumetric heat source,

Sv, is calculated as follows [5,19]:

Sv ¼
Qd

pf 2
d r

2
dd

ð15Þ

It should be noted that Eq. (15) is only valid for grid

points within the cylindrical heat source, and the power

density is zero outside the cylinder. A brief description

of free surface profile calculation is given in Appendix A.
3. Inverse modeling

Inverse model involves the minimization of an objec-

tive function that depicts the difference between the com-

puted and measured values [26–28,32–34]. For example,

if the penetration, throat and the leg-length of the fusion

zone are of interest, an objective function, O(f), can be

defined as follows:

OðfÞ ¼
XM
m¼1

ðpe
m � pc

mÞ
2 þ

XM
m¼1

ðtem � tcmÞ
2 þ

XM
m¼1

ðlem � lcmÞ
2

ð16Þ
The penetration, actual throat and leg-length in a

GMAW fillet weld are defined in Fig. 3. In the literature,

it has been show that arc efficiency varies linearly with

the input power [19]. Therefore, in our model also we

assumed arc efficiency as linear function of the input

power as

g ¼ Aþ B � P 

i ð17Þ

P 

i ¼

IV
pr2wwfq½CpðT l � T aÞ þ L� ð18Þ

Therefore, now we need to find four unknown para-

meters, A, B, radius of cylindrical volumetric droplet

heat source and the enhanced thermal conductivity. In

Eq. (16), f refers to the set of these four unknown

parameters in non-dimensional forms i.e. f1, f2, f3 and

f4 such that

ffg ¼ f f1 f2 f3 f4 g ¼ fA B fd fe g ð19Þ

The enhancement factor, fe, is defined as the ratio of

the enhanced thermal conductivity, ke, and conductivity

of the liquid material, kL. Evidently, O(f) is a function

of f since O(f) contains variables pm, tm and lm, which

are dependent on the parameters included in f. The par-

tial derivatives of weld penetration, actual throat and

leg-length with respect to unknown parameters are

generally referred as sensitivity coefficients. Assuming

that O(f) is continuous and has a minimum value, the

optimum values of the four unknowns are obtained by

using Levenberg–Marquardt and two different modifica-

tions of conjugate gradient method [27] suggested by

Fletcher–Reeves [35] and Polak–Ribiere [36].

3.1. Levenberg–Marquardt method

By using Levenburg–Marquardt method, the un-

known parameters can be obtained by following equa-

tion [18,27,36]:

ðS þ kkXkÞ � Df k ¼ S
 ð20Þ

where kk is a scalar damping co-efficient and usually

taken as 0.001 and Xk is the diagonal matrix. The order

of Xk is same as that of the matrix S and is defined as
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Xk = diag S. The elements of matrix S, and S* i.e. Sij
and S


i can be written as

Sij ¼
X8

m¼1

oðpc
mÞ

k

ofi

oðpc
mÞ

k

ofj
þ oðtcmÞ

k

ofi

oðtcmÞ
k

ofj
þ oðlcmÞ

k

ofi

oðlcmÞ
k

ofj

 !
;

for i; j ¼ 1 to N ð21Þ

S

i ¼

X8

m¼1

½pe
m � ðpc

mÞ
k � oðp

c
mÞ

k

ofi
þ ½tem � ðtcmÞ

k � oðt
c
mÞ

k

ofi

 

þ½lem � ðlcmÞ
k � oðl

c
mÞ

k

ofi

!
; for i ¼ 1 to N ð22Þ
bk ¼

PM
m¼1 ðpc

m � pe
mÞ
PN

i¼1

opc
m

of k
i

� �
dk
i

� �
þ ðtcm � temÞ

PN
i¼1

otcm
of k

i

� �
dk
i

� �
þ ðlcm � lemÞ

PN
i¼1

olcm
of k

i

� �
dk
i

� �� �
PM

m¼1

PN
i¼1

opc
m

of k
i

� �
dk
i þ

PN
i¼1

otcm
of k

i

� �
dk
i þ

PN
i¼1

olcm
of k

i

� �
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where N is the number of unknown variables, i.e. 4. The

values of Df k
i obtained using Eq. (20) are used to calcu-

late the value of unknown parameters at next iteration

by using following relation:

f kþ1
i ¼ f k

i þ Df k
i ð23Þ
3.2. Conjugate gradient method

The iterative procedure of the Conjugate Gradient

method for the minimization of the objective function

is given by

f kþ1
i ¼ f k

i � bkdk
i for i ¼ 1 to N ð24Þ

The direction of descent for variable i, dk
i , is a conjuga-

tion of the its gradient direction, $O(f k)i, and its direc-

tion of the descent of the previous iteration, dk�1
i and

is given as

dk
i ¼ ½rOðf kÞ�i þ ckdk�1

i for i ¼ 1 to N ð25Þ

where ck is the conjugation coefficient. Different expres-

sions are available in the literature for the conju-

gate coefficient, ck. Fletcher and Reeves [35] suggested

ck as

ck ¼

PN
i¼1

½rOðf kÞ�2i
PN
i¼1

½rOðf k�1Þ�2i
for k ¼ 1; 2; . . . ; and c0 ¼ 0

ð26Þ
Polak–Ribiere suggested expression for ck as [27,36]

ck ¼

PN
i¼1

½rOðf kÞ�i½rOðf k
i Þ � rOðf k�1

i Þ�i
PN
i¼1

½rOðf k�1Þ�2i

for k ¼ 1; 2; . . . ; and c0 ¼ 0 ð27Þ

The search step size, bk, is obtained as the one which

minimizes the objective function. Substituting the values

of Taylor series expansion of the unknown parameters

at iteration k + 1 (i.e. Eq. (24) in Eq. (16)), and minimiz-

ing with respect to bk, we get
The algorithms used for Levenberg–Marquardt and

conjugate gradient methods are available in literature

[27].

A 72 · 66 · 47 grid system was used and the corre-

sponding solution domain had dimensions of 450mm

in length, 108mm in width and 18mm in depth. Spatially

non-uniform grids with finer grids near the heat source

were used for maximum resolution of variables. The cal-

culations normally converged within 4000 iterations,

which took about 6min for the run of a direct model

in a PC with 3.06GHz Intel P4 CPU and 512Mb

PC2700 DDR-SDRAM.
4. Results and discussion

4.1. Temperature distribution in the weldment

The calculated temperature field for case #1 (Table 1)

is shown in Figs. 4 and 5, where the weld pool boundary

is represented by the 1745K solidus isotherm of A-36

steel. The physical properties of the A-36 mild steel

workpiece used in the calculations are given in Table

2. Fig. 4 shows that the isotherms in front of the weld

pool are compressed while those behind the weld pool

are expanded because of the motion of the heat source.

This figure also indicates that the depression of the grid

lines is maximum under the arc while the grids are ele-

vated in the rear part of the weld pool. Fig. 5 shows

the evolution of surface profile during welding. The

plane in Fig. 5(a) is located 5mm ahead of the arc,

and this region has not yet melted. The region directly

under the arc is shown in Fig. 5(b). This figure also



Table 1

Welding conditions used in the experiments

Case no. Contact tube to workpiece

distance (CTWD) (mm)

Wire feeding rate

(mm/s)

Travel speed

(mm/s)

Voltage

(V)

Estimated current

(A)

1 22.2 169.3 4.2 31 312.0

2 22.2 211.7 6.4 31 362.0

3 22.2 169.3 6.4 33 312.0

4 22.2 211.7 4.2 33 362.0

5 28.6 169.3 6.4 31 286.8

6 28.6 169.3 4.2 33 286.8

7 28.6 211.7 4.2 31 331.4

8 28.6 211.7 6.4 33 331.4

Polarity: direct current electrode positive (DCEP).

Joint type: fillet joint, flat position, 90 degree joint angle, and no root gap, as shown in Fig. 1.

Electrode type: 1.32mm (0.052 in.) diameter solid wire.

Base metal: ASTM A-36 mild steel.

Shielding gas: Ar–10%CO2.

1745800

1850

1950
1200

5 mm

Welding direction

Fig. 4. Calculated temperature field at the weld top surface for

case #1 (Table 1). The temperatures are given in Kelvin. The

thin solid lines represent the deformable grid system used in the

calculation. For clarity, only a portion of the workpiece is

shown in this figure.
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shows the depression of the free surface due to the arc

force. The temperature profiles in Fig. 5(b) clearly show

the finger penetration characteristic of the GMA weld-

ing. As the monitoring location moves away from the

arc, the weld pool surface shows considerably less

depression as would be expected from the reduction in

arc pressure. Furthermore, the accumulation of the liq-

uid metal in the rear of the weld pool is clearly visible

in Fig. 5(c) and (d). The solidified region behind the

arc is elevated owing to the filler metal addition. This

accumulated metal forms the weld reinforcement after

solidification.
4.2. Effect of unknown parameters on the weld pool

geometry

The effect of variation of thermal conductivity

enhancement factor and arc efficiency on the non-dimen-

sional weld geometry i.e. leg-length, throat and penetra-

tion are shown in Fig. 6(a)–(c). The non-dimensional

values of the leg-length, throat and penetration shown

in Fig. 6(a)–(c) are obtained by dividing the numerically

computed value with the corresponding experimentally

obtained value. The increase in enhancement factor (fe)

leads to higher heat conduction inside the workpiece

which tends to minimize the temperature gradient. Since

most of the heat flows in the downward direction, the

value of leg-length does not vary much with increase

in fe for a fixed value of arc efficiency as shown in Fig.

6(a). However, when the arc efficiency is increased, from

0.40 to 0.80, a 30% increase in the non-dimensional leg-

length is achieved because the leg-length depends mainly

on the heat input from the arc.

In contrast to leg-length, penetration is dictated by

heat transfer due to impinging metal droplets. The sen-

sible heat of droplets is distributed mainly to a region di-

rectly under the arc and the penetration is affected by the

distribution of heat. The enhanced thermal conductivity

improves heat transfer rate. The more efficient distribu-

tion of a given amount of heat from the droplets in all

directions leads to smaller penetration as shown in

Fig. 6(b). This figure also shows that the penetration in-

creases with higher heat input. Fig. 6(c) shows that the

computed non-dimensional throat does not vary signifi-

cantly with either arc efficiency or the enhancement fac-

tor for given wire feed rate and welding speed. This

behavior is expected since the dimensions of the throat

depend largely on the rate of mass addition. The trends

shown in Fig. 6(a)–(c) were true for other values of



Fig. 5. Calculated temperature field at different cross sections planes perpendicular to the welding direction for case#1 (Table 1): (a)

5mm ahead of the arc location; (b) directly under the arc; (c) 5mm rear of the arc location; (d) 10mm rear of the arc location. The

temperatures are given in Kelvin.

Table 2

Physical properties of the mild steel workpiece used in the

calculation

Physical property Value

Liquidus temperature, TL (K) 1785.0

Solidus temperature, TS (K) 1745.0

Density of metal, q (kg/m3) 7200

Thermal conductivity of solid, kS, (J/msK) 21.0

Specific heat of solid, CPS (J/kgK) 703.4

Specific heat of liquid, CPL (J/kgK) 808.1

Surface tension of liquid metal (N/m) 1.2
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current, voltage, wire feed rate, CTWD and welding

speed investigated.

Fig. 6(a) shows that there are several combinations of

g and fe that can provide acceptable values of leg-length.
Similarly, from Fig. 6(b) and (c), we can obtain inde-

pendent combinations of g and fe that would result in

good agreement between the computed and the experi-

mental values of penetration and throat. However, there

is no guarantee that the same combination of g and fe
would lead to satisfactory prediction of all weld dimen-

sions given by p
m ¼ t
m ¼ l
m ¼ 1. Efficiency also varies

almost linearly with the heat input [19] which increases

the complexity of the problem. With the increase in

the welding current, the drops become progressively

smaller and their rate of transfer increases because of

higher electromagnetic force acting on the droplets

[19]. In short, heat transfer in the GMAW process is

highly complex because of the interaction of several

simultaneously occurring physical processes. Of the

many variables that define a particular weld, three para-

meters, i.e., arc efficiency, enhanced thermal conductiv-
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Fig. 6. Contour plot of non-dimensional: (a) leg-length; (b) penetration; (c) actual throat calculation, for I = 312A, V = 31.0V,

welding speed = 0.42cm/s, wire feed = 16.93cm/s, CTWD = 2.22cm and fd = 2.0.
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ity and radius of volumetric cylindrical heat source, can-

not be defined with certainty from fundamental princi-

ples of science. Therefore, determination of these

parameters from a limited volume of experimental data

is important.

4.3. Estimation of unknown parameters

To calculate the optimized values of arc efficiency,

enhanced thermal conductivity and radius of volumetric

cylindrical heat source, a set of initial guessed values are

necessary for these parameters. Table 3 compares the re-

sults obtained by using three methods of optimization

for the initial guessed values of A = 0.65, B = 0.05,

fd = 2.0, fe = 25.0 that define the uncertain parameter

values. Polak and Ribiere�s CG method gives better con-

vergence of the objective function than the other two

methods. The minimum value of the objective function,

0.39, is achieved after 14 iterations by this method. LM

and Fletcher–Reeves�s CG method produced values of

0.42 and 0.40 in 14 and 27 iterations, respectively. As

shown in Fig. 7, the objective function did not decrease
continuously with iterations. After reaching low values,

the objective function started to oscillate with iterations.

The optimized combination ofA, B, fd and fe obtained

from all the three optimization methods presented in

Table 3 shows a higher range of arc efficiency for all

the experimental cases presented in Table 1. These values

are higher than the reported values of arc efficiency [19]

for the GMAW process. Therefore, these values do not

seem to lie within the expected range of values. Again,

Fig. 8 shows that Polak and Ribiere�s CG method give

better convergence of the objective function compared

to other two optimization methods. The minimum value

of O(f) achieved is 0.35 within 18 iterations by this meth-

od. On the other hand, LM and Polak–Ribiere�s CG

method produced a value of 0.44 and 0.38 in 17 and 16

iterations, respectively. After reaching the low values,

again objective function starts oscillating and do not de-

crease beyond these values. This oscillation in objective

function is because the inverse problems become ill-con-

ditioned near the optimal solution [26–28].

Based on the results obtained for two sets of input

values of unknown parameters in Tables 3 and 4, we



Table 3

Comparison of results obtained by using LM method and the two versions of CG method for the initial guessed values of A = 0.65,

B = 0.05, fd = 2.0 and fe = 25

Method Parameter Estimates O(f) Iterations Obtained range of arc efficiency

by using values of A and B

LM method A 0.64 0.42 14 0.81–0.86

B 0.07

fd 1.48

fe 26.20

CG method—Polak and Ribiere A 0.50 0.39 14 0.82–0.90

B 0.13

fd 1.97

fe 24.01

CG method—Fletcher and Reeves A 0.56 0.40 27 0.83–0.90

B 0.11

fd 2.03

fe 24.02
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Fig. 7. Comparison of calculation progress for all the four

unknowns and the objective function using LM method and the

two versions of CG method for the initial guessed values of

A = 0.65, B = 0.05, fd = 2.0, fe = 25.0.
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Fig. 8. Comparison of calculation progress for all the four

unknowns and the objective function using LM method and the

two versions of CG method for the initial guessed values of

A = 0.3, B = 0.15, fd = 2.5, fe = 10.0.
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can see that O(f) does not vary much after it attains a

value of about 0.40. It is certainly inappropriate to relate

these optimum values as an universal feature of GMAW

process. A rational way to describe the optimum combi-

nation of the four unknown parameters is as a set of sys-

tem properties that is inherent within the eight measured

weld samples that have governed the optimization calcu-

lation. Based on the minimum value of the objective

function, O(f), we can propose the final values of the un-

known parameters as

g ¼ 0:419þ 5:61	 10�6 IV =wf ð29Þ

fd ¼ 2:67 ð30Þ

fe ¼ 12:00 ð31Þ
where I is current in Amp, V is voltage in volts and wf is

wire feed rate in m/s. Eq. (29) shows that the arc effi-

ciency increases with increase in input power and de-

crease in wire feed rate. The values of arc efficiency

also lies in the range of 66–85% as reported in the liter-

ature [19,24]. Arc efficiency decreases with wire feed rate

because more power is necessary for melting wire at high

wire feed rate. As a result, less power is available to the

workpiece. The optimized value of enhancement factor

for thermal conductivity is found to be 12.0. Hong

et al. [22,24] suggested an enhancement factor of 12 to

20 for GMAW with 150A and 25V. Choo and Szekely

[25] suggested an enhancement factor of more than 8

for a current of 100A. Although the values available

in the literature [24,25] are for specific welding condi-



Table 4

Comparison of results obtained by using LM method and the two versions of CG method for the initial guessed values of A = 0.3,

B = 0.15, fd = 2.5 and fe = 10

Method Parameter Estimates O(f) Iterations Obtained range of arc efficiency

by using values of A and B

LM method A 0.36 0.44 17 0.71–0.79

B 0.14

fd 1.56

fe 8.4

CG method—Polak and Ribiere A 0.42 0.35 18 0.69–0.76

B 0.11

fd 2.67

fe 12.00

CG method—Fletcher and Reeves A 0.47 0.38 16 0.67–0.72

B 0.08

fd 2.46

fe 12.01
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tions, they show that the optimized values obtained in

this work are somewhat similar to those reported in

the literature.

4.4. Confidence region analysis

We assumed that the errors in the experimental data

were random, i.e., the kind that will cancel each other if

we take enough data. However, measurements having

systematic errors do not cancel each other with averag-

ing. So, the minimum value of the objective function is

subject to systematic errors, thermal stress induced dis-

tortion in the weld samples and the assumptions used

in the heat transfer model. Considering that all the

measurements have the same error, an RMS error can

be defined as [27]:

eRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M
OðfÞ

r
ð32Þ

For minimum value of objective function obtained

using Polak and Ribiere�s CG method, we get eRMS =

0.21cm. Assuming, 25% of this eRMS value is due to sys-

tematic errors in experimental measurements, the stand-

ard deviation (rm) in the experimental measurements

can be assumed equal to 0.05cm. By performing a statis-
Table 5

Obtained confidence range and joint confidence region of optimized va

in the measurements

Parameter Optimized

estimates

Standard

deviation

Confidence

range

Joint

A 0.43 0.01 0.41 6 A 6 0.45 ð55:27
�0:16

�3:47

B 0.12 0.01 0.10 6 B 6 0.14

fd 2.70 0.02 2.66 6 fd 6 2.74

fe 12.20 0.15 11.90 6 fe 6 12.50
tical analysis it is possible to assess the accuracy of the

calculated values. If the errors are Gaussian in distribu-

tion, the minimization of the chi-square norm can be

used for testing the accuracy of the parameters. The re-

duced covariance matrix, V, of the estimated parameters

is given by [32,33,37]

V ¼

covðf1; f1Þ covðf1; f2Þ covðf1; f3Þ covðf1; f4Þ
covðf2; f1Þ covðf2; f2Þ covðf2; f3Þ covðf2; f4Þ
covðf3; f1Þ covðf3; f2Þ covðf3; f3Þ covðf3; f4Þ
covðf4; f1Þ covðf4; f2Þ covðf4; f3Þ covðf4; f4Þ

2
6664

3
7775

¼ S�1r2
m ð33Þ

The standard deviations for the estimated parameters

can be obtained from the diagonal elements of V as

rfj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðfj; fj

q
Þ ¼

ffiffiffiffiffiffiffi
V jj

p
for j ¼ 1; . . . ;N ð34Þ

where Vjj is the jth element in jth row of the matrix V.

Confidence intervals at the 95% confidence levels for

the estimated parameters are obtained as

fj � 1:96rfj 6 fj 6 fj þ 1:96rfj for j ¼ 1; . . . ;N ð35Þ

The confidence intervals calculated by using Eqs. (34)

and (35) for obtained optimized values are listed in Table

5. But, confidence intervals for individual parameters do
lues of unknown parameters for a standard deviation of 0.05cm

confidence region

A2 þ 2:10B2 þ 1:36f 2
d þ 0:15f 2

e þ 19:9AB� 8:38Af d � 3:21Af e

Bf d þ 0:06Bf e þ 0:01f dfe � 76:90A� 17:21B� 0:71f d

f e þ 47:27Þ 6 0
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not provide a good approximation for a joint confidence

region for the estimated parameters taken as a set. The

joint confidence region for the estimated parameters

[32,33,37] is given by:

ðf̂ � f ÞTV �1ðf̂ � f Þ 6 v2
N ð36Þ

The calculated joint confidence interval for obtained

optimized values is listed in Table 5. It is clear from the

values listed in Table 5 that these confidence intervals

can be used to select our optimized values of unknown

parameters. Table 5 shows that the optimized values of

the unknown parameters fall inside joint confidence

region.

Fig. 9 shows the calculated values of p
m; l
m and t
m
using the optimized values of the unknown parameters.

The results show that the optimized values of the un-
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Fig. 9. Computed values of non-dimensional throat, penetra-

tion and leg-length using the optimized set of all the four

unknown parameters for all the eight measurement cases listed

in Table 1.

Fig. 10. Comparison between the calculated and experimental weld ge

represents the calculated weld pool geometry.
known parameters do result in correct predictions of

the fusion zone geometry. The calculated bead shape

using the optimized value of the efficiency, volumetric

cylindrical heat source radius and enhanced thermal

conductivity, for cases # 2 and # 6 in Table 1 are shown

in Fig. 10. The calculated fusion zone geometry for both

the cases agrees reasonably well with the corresponding

experimental results. Some discrepancy between the

experimental surface profile and the computed results

is due to thermal stress induced distortion as can be evi-

denced from the gap between the two plates. On the

whole, the geometric features of the fillet weld could

be satisfactorily predicted by the using the optimized

values of unknown parameters in the numerical heat

transfer model.
5. Conclusions

The coupled influence of arc efficiency, enhanced

thermal conductivity and the radius of the volumetric

cylinderical heat source on heat transfer during GMA

welding is complex. The values of these unknown

parameters can be determined from a limited volume

of experimental data using an appropriate optimization

model and a heat transfer model for GMA fillet welding.

Based on this approach, a smart phenomenological

model for GMA fillet welding involving numerical cal-

culation of heat transfer and parameter optimization

was developed. The model solved energy conservation

equations in a curvilinear coordinate to obtain the

temperature fields and surface profile during GMA fil-

let welding. Levenberg–Marquardt method, Fletcher–

Reeve and Polak–Ribiere�s modified conjugate gradient

methods were considered for multivariable optimization.

A relation between arc efficiency and input power and

wire feed rate is proposed. The optimized values of arc

efficiency, radius of volumetric heat source and en-

hanced thermal conductivity were found to be within
ometry for cases # 2 and # 6 given in Table 1. The contour line
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the range of values reported in the literature. Using the

values of unknown parameters determined by this

model, the calculated shape and size of the fusion zone,

finger penetration characteristic of the GMA welds and

the solidified free surface profile were calculated for sev-

eral welding conditions. Good agreement between the

model predictions and the experimental data of leg

length, the penetration depth and the actual throat for

various welding conditions show that this approach is

promising.
Appendix A

The weld pool free surface profile is determined by

minimizing the total surface energy, which includes sur-

face tension energy, the potential energy owing to grav-

ity and the work performed by the arc force displacing

the weld pool surface. The governing equation for the

free surface profile is given by [5]

c
ð1þ /2

yÞ/xx � 2/x/y/xy þ ð1þ /2
xÞ/yy

ð1þ /2
x þ /2

yÞ
3=2

( )

¼ qg/ þ P a þ k ðA:1Þ

The arc pressure, Pa, is expressed as [5]:

P a ¼
F

2pr2
p

exp � x2 þ y2

2r2
p

 !
ðA:2Þ

where

F ¼ �0:04017þ 0:0002553	 I ðNÞ ðA:3Þ

rp ¼ 1:4875þ 0:00123	 I ðmmÞ ðA:4Þ

The boundary conditions for the free surface equa-

tion are given as

At the front pool boundary : / ¼ z0 ðA:5aÞ

At the rear pool boundary :
o/
ox

¼ 0 ðA:5bÞ

Here the front and rear pool boundaries are defined so

that the temperature gradient along the x direction

(dT/dx) is positive at the front pool boundary and neg-

ative at the rear boundary. As shown in Fig. 1(a), the

deposited area, AFW, at a solidified cross section of the

fillet weld is equal to the amount of fed wire per unit

length:Z
ð/s � z0Þdy �

pr2wwf

Uw

¼ 0 ðA:6Þ

Calculation of the free surface profile requires simulta-

neous solution of both the free surface Eq. (A.1) and

the constraint Eq. (A.6). Eq. (A.1) is discretized using

the finite difference method and then solved using the

Gauss–Seidel point-by-point method for an assumed k.
The resulting free surface profile is applied to the con-

straint Eq. (A.6) and the residual (defined as the left-

hand side of Eq. (A.6)) is evaluated. The value of k is

determined iteratively until both Eqs. (A.1) and (A.6)

are satisfied.
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