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The evolution of the grain structure and topological-class distributions in zone-refined iron were
modeled using a three-dimensional (3-D) Monte Carlo (MC) model. The effect of grain size on
topological features was examined. The relationship between the topological features of grains and
the geometry of their surrounding grains was studied. In particular, the average number of sides of
the grains was related to the average number of sides of their neighbors. Both the computed grain-
size distribution and the topological-class distribution were found to be invariant with time. A linear
relationship existed between the average grain size and the average number of sides of grains. The
number of sides of grains was inversely proportional to the average number of sides of the neighboring
grains. The computed average grain size, grain-size distribution, and topological-class distribution
agreed well with the corresponding independent experimental data. The results indicate significant
promise for understanding grain growth and topological features using 3-D MC simulation.

I. INTRODUCTION a result, more-realistic calculations of grain growth have
become possible. Among the computational models, MonteGRAIN-SIZE changes during processing of metals and
Carlo (MC) simulation[7,8,10–22] has been widely used to sim-alloys may affect their strength, toughness, ductility, and
ulate grain growth under both isothermal and nonisothermalcorrosion resistance.[1] As a result, the prediction and control
conditions. Most of the calculations reported in the literatureof grain-structure evolution have received considerable
have been performed in two dimensions.[7,8,10–12,16,17] A fewattention. Analytical models have been developed to under-
notable exceptions include some recent works, where calcu-stand the effects of time and temperature on the grain-size
lations were done in three dimensions.[8,14,15,20–22]

changes. These models often describe grain growth by the
There are considerable computational challenges in con-following parabolic equation, derived by considering growth

ducting meaningful MC calculations. The main difficulty isdue to the change in grain-boundary energy.[2–6]

in the processing of a large volume of data in a realistic
Ln 5 Ct [1] time frame. For example, the simulation in a 100 3 100

two-dimensional grid, considering 200 MC simulation steps,where L is the average grain size; n is the grain-growth
involves 2.0 million (100 3 100 3 200) data points perexponent, which was derived[2–6] as 2.0; C is a temperature-
variable. For a more realistic simulation, a three dimensionaldependent parameter; and t is time. However, measure-
(3-D) calculationwith 100 3 100 3 100 grid points undergo-ments[7] on various metallic systems have shown that the
ing 200 iteration steps will increase the number of data pointsgrain-growth exponent may be more than 2.0 in many cases.

The discrepancy between the experimental data[7,8] and to 200 million per variable. This two-order-of-magnitude
the results from analytical models[2–6] can be attributed to increase in the volume of data presents several interesting
the simplifying assumptions inherent in the models. The challenges even for the most powerful modern computers.
most common assumption of a spherical grain shape leads Only in recent years have such large-scale computations
to an unrealistic estimation of the grain surface area and become tractable, because of advances in the computational
violates the fundamental topological mandate to share hardware. Furthermore, modern data visualization tech-
interfacial planes between neighboring grains in a dense niques and tools have to be pushed to their limits just to
crystalline solid. Furthermore, the previous analytical mod- visualize the computed results, even in an efficient binary
els considered growth of isolated grains which were unaf- format.
fected by the neighboring grains in the matrix. A rigorous Grain growth and topological features of grains have
analytical treatment of grain growth, considering all its com- received considerable attention in the literature[3–15,26–29] for
ponent physical processes and topological constraints, is not various reasons. Grain surfaces and edges provide heteroge-
yet available. neous nucleation sites for important reactions. A relation

With the development of computational techniques in the between the average grain size and grain shape (number of
last two decades that take into account both the grain-growth

sides) is important, because grain growth is influenced bykinetics and the topological features, some of the common
both kinetic and topological factors. Grains with a largeassumptions in the analytical models have been relaxed. As
number of sides (lower grain-boundary length per unit area)
are energetically favored to grow at the expense of their
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There are important differences between the research pre- dSiSj 5 1 when Si 5 Sj [3]
sented in this article and in previous works[8,14,15,20–22] that

dSiSj 5 0 when Si Þ Sj [4]addressed grain growth in three dimensions. The differences
lie in the implementation of the basic MC algorithm and in

The kinetics of grain-boundary migration are simulatedthe analysis of the results. References 8 and 14 consider all
by selecting a site randomly and changing its orientation topossible interactions in the system, involving all grid points
one of the nearest-neighbor orientations based on the energyfor the changing orientation of a location during the reorien-
change due to the attempted orientation change. The proba-tation step. However, in calculations with large grids, this
bility of the orientation change is defined asapproach is time consuming and unnecessary in many cases,

as grain-boundary migration involves atomic jumps toward p 5 1 for DE # 0 [5]
nearest-neighbor sites in adjacent grains.[13] In the current

p 5 e
2DE
kBT for DE . 0 [6]work, only the nearest-neighbor grid points are considered

in the reorientation step. Our previous research[20,21,22]

where DE is the change of energy due to the change ofaddressed grain growth under nonisothermal conditions.
orientation,kB is the Boltzman constant, and T is the absoluteHowever, the topology of the grains was not investigated.
temperature. A successful transition at the grain boundariesIn contrast, References 8, 14, and 15 addressed the topology
to orientations of nearest-neighbor grains corresponds toof grains. However, these publications did not investigate
boundary migration.either the relation between the grain-size distribution and

In a 3-D simulation, the total number of the nearest first,topological-classdistribution or the decrease in grain perim-
second, and third neighbors[15,20–22] is 26. The energy differ-eter with time.
ence due to attempted orientation switching is calculated byAlthough there is a growing body of literature on the

algorithms to compute grain growth, the applicationof these
DE 5 J o

26

i51
(dSiS0

2 dSiSn) [7]algorithms to simulate grain growth in real materials has
not received much attention. Here, we report a comprehen-
sive effort to develop a 3D MC simulation model for grain where S0 is the original orientation number, Si represents
growth by considering both the grain-growth kinetics and the orientation numbers of its nearest neighbors, and Sn is
topological features in zone-refined iron. This article ana- a new orientation number. It should be noted that the grain-
lyzes the grain growth, decrease in the net grain perimeter boundary energy is treated as isotropic in Eqs. [2] and [7].
per unit area, grain-size distribution, and topological-class
distribution. The interrelationshipsbetween these properties

B. Isothermal Grain-Growth Kinetics from MCare also examined. The MC model predictions are compared
Simulationswith independent experimental results.[9]

Through the MC simulation, an empirical relation[16]

between the simulated grain size and the MC simulation
II. MATHEMATICAL MODELING time can be obtained as

A. Monte Carlo Simulation of Grain Growth L 5 K 1l(tMCS)n 1 [8]

The application of the MC technique to simulate grain where L is the simulated average grain size measured by
growth has been described in detail in the literature.1,7–17

average grain intercepts, l is the discrete grid-point spacing
Only the salient features of this technique are described here. in the MC technique, tMCS is the MC simulation time, and
Each grid point is assigned a random orientation number K1 and n1 are the model constants, which are obtained by
between 1 and q, where q is the total number of grain regression analysis of the data generated from the MC simu-
orientations. The value of q was taken to be 48 in the present lation. It should be noted that the MC simulation time (tMCS)
simulation, since it is known that the grain-growth exponent in Eq. [8] is a dimensionless quantity.
becomes almost independent of q when its value is larger[7]

An experimental data–based (EDB) kinetic model pro-
than 30. Two adjacentgrid points havingthe same orientation posed by Gao and Thompson[16] was used to relate tMCS to
number are considered to be a part of the same grain; other- real time because of the availability of experimental data.[9]

wise, they belong to different grains. The grain-boundary According to the EDB model, the following relation can be
energy is specified by defining an interaction between near- obtained, by multiple regression analysis of the isothermal
est-neighbor lattice sites. The local interaction energy (E ) experimental data, between the average grain size (L), aver-
is calculated by the Hamiltonian equation: age initial grain size (Lo), holding time (t), and tempera-

ture (T ):
E 5 2J o

n

j 51
(dSiSj

2 1) [2] Ln 2 L n
0 5 Kte12

Q
RT2 [9]

where K is a constant and Q is the activation energy. Bothwhere J is a positive constant which sets the scale of the
grain-boundary energy, d is the Kronecker’s delta function, K and Q are obtained from experimental data[23] and are

given in Table I. Hu[9] noted that the value of n in Eq. [9]Si is the orientation at a randomly selected site i, Sj is the
orientation of its nearest neighbor, and n is the total number changes with temperature. At the temperature considered in

this study (923 K), n is about 2.7 for zone-refined iron. Thisof the nearest-neighbor sites. Each pair of nearest neighbors
contributes J to the system energy when they are of unlike result was obtained by neglecting the initial average grain

size and the sample thickness. Vandermeer and Hu[23] laterorientation and zero otherwise. The Kronecker’s delta func-
tion in Eq. [2] is defined as represented grain growth in terms of a single, thermally
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Table I. Computational and Material Parameters Used in
the Calculations for Zone-Refined Iron

Parameter Value Reference

Grid spacing, l (mm) 40 —
Total number of grain orientations, q 48 —
Initial average grain size, L0 (mm) 40 23
Number of iteration steps 200 —
Temperature (K) 923 9
Simulation constant, K1 1.01 —
Simulation constant, n1 0.42 —
Experimental grain growth exponent, n 2.0 23
Activation energy (kJ/mol) 250 9
Pre-exponential factor, K (m2/s) 528 23

activated rate process by considering both the initial average
grain size and sample thickness and arrived at a constant

Fig. 1—Calculated average grain size as a function of MC simulation time,
value of n 5 2.0 over the entire temperature range (823 to tMCS, for five runs. A section of the plot is magnified for clarity. The symbol
1123 K) considered in the experiments of Hu.[9] The same l represents grid spacing, which is taken as 40 mm in the present article.
value of the experimental grain-growth exponent, n 5 2.0,
is considered here.

Substituting Eq. [8] into [9], a relationship between the
MC simulation time and real time and temperature is
obtained:

(tMCS)nn1 5 1 L 0

K 1l2
n

1
Kt

(K 1l)n e2
Q
RT [10]

In the present investigation, 3-D simulations were carried
out in a simple cubic 100 3 100 3 100 grid with a grid
spacing[9] of 40 mm. The computationaland material parame-
ters used for the calculation are provided in Table I.

Topological attributes and the average grain size were
determined in the following six planes: X 5 1.32 mm, Y 5
1.32 mm, Z 5 1.32 mm, X 5 2.64 mm, Y 5 2.64 mm, and
Z 5 2.64 mm in the 4 3 4 3 4 mm domain. The lineal-
intercept method[24] was used in the calculation of average
grain size. Since the MC simulation results can vary from
run to run, the grain-growth and topologicalresults presented
in this article are averaged over five runs to examine this
variation. The run-to-run variations of the results are indi-
cated by error bars in the figures.

III. RESULTS AND DISCUSSION

The calculated average grain sizes as a function of tMCS

for all five runs are shown in Figure 1. The variation of the
average grain size ranged from 62.1 pct at low values of
tMCS (,40) to 63.0 pct at high values of tMCS (.160). The
evolution of simulated grain structure and the continuous

Fig. 2—Evolution of 3-D-simulated grain structure with a 100 3 100 3increase in the average grain size with time are shown in
100 grid system as a function of time.Figure 2.

The calculated values of average grain size and the grain
perimeter as a function of time are shown in logarithmic
scales in Figure 3. It is observed that the calculated and the of curvature of a grain boundary is inversely proportional

to the perimeter per unit area[10] and directly proportionalexperimentally measured values[9] are comparable. Except
at very short times (,2000 seconds), the average grain-size to the average grain size. Thus, an increase in the logarithm

of average grain size is accompanied by a decrease in thedata in Figure 3 can be represented by Eq. [1]. In the initial
period, L0 in Eq. [9] cannot be neglected, and the computed logarithm of net grain perimeter per unit area, making the

two rates almost the same in magnitude.results do not fit Eq. [1]. After the initial period, the total
length of the grain boundary per unit area, i.e., the grain Figures 4(a) and (b) show the grain-size distribution at

125 and 625 minutes (7500 and 37500 seconds), respec-perimeter per unit area, decreases with time at the same rate
as the rate of increase in the average grain size. The radius tively.The frequency values represent the ratio of the number
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Fig. 3—Calculated and experimentally determined[9] average grain size and
(a)the computed grain perimeter as a function of time.

of grains with R/Ravg values in any chosen interval of 0.2
and the total number of grains. The grain-size distributions
from both simulations and experiments exhibit asymmetric
peaks in the range of R/Ravg between 0.5 and 1.5. The largest
grains are about 2.5 to 3.5 times the average grain size. The
computedaverage grain-sizedistributionsare compared with
the experimental data reported by Hu[9] in Figure 4(c). It
can be observed that the frequency-distribution curves did
not change with time, as has been observed by Hu.[9] Further-
more, the computedvalues agreed well with the experimental
results. The computed grain-size distributions are also com-
pared with the corresponding analytically calculated distri-
butions proposed by Feltham[5] and Louat[6] in Figure 4(c).
It is instructive to review, very briefly, the salient features (b)
of the calculations. Both authors adopted a “mean-field
approach,” according to which the overall flux, j, is given
by[25]

j 5 2D
­f
­R

1 fv [11]

where D can be identified with a diffusion coefficient that
depends on the specific grain-boundary mobility, and f is
the distribution function, which is affected by both grain
size (R) and time. The first term in the right-hand side
represents a diffusion-like process,[25] in which grains larger
than Ravg grow due to a “concentration gradient” (­f /­R ),
and the second term refers to a drift velocity (v) which
originates due to the reduction in grain-boundary area. The
physical basis for the diffusion-like process is not clear and
has been questioned in the literature.[8,25]

(c)
Feltham[5] assumed that the drift term in Eq. [11] domi-

Fig. 4—(a) and (b) The grain size distribution shown for five runs at 125nates normal grain growth. He derived the following expres- min (7500 s) and 625 min (37,500 s). (c) The grain size distribution as an
sion for the velocity, assuming f to have a log-normal average of five runs from the present simulation compared with Hu’s[9]

data for zone-refined iron and the theoretical distributions of Feltham[5]distribution:
and Louat.[6]

v 5
K
R

ln 1 R
Ravg

2 [12]
Setting R 5 Rmax 5 2.5Ravg from experimental data and
assuming the log-normal distribution to be time invariant,

where K is a constant used previously in Eq. [9]. Equation he obtainedparabolic growth kinetics.The following expres-
[12] may be rewritten as sion for f was considered by Feltham:[5]

dR 2

dt
5 2K ln 1 R

Ravg
2 [13] f 5

b1

b2p1/2 e2

21ln1 R
Ravg

2 2 b322

b2
2 [14]

1198—VOLUME 32B, DECEMBER 2001 METALLURGICAL AND MATERIALS TRANSACTIONS B



Table II. Computed Values of the Constants in Equations
[14] and [17]

Constant Value Standard Error Standard Deviation Confidence

b1 0.31 0.66 3 1021

b2 1.32 0.11 0.48 3 1021 92 pct
b3 0.27 0.26 3 1021

b 0.23 0.89 3 1022

a 0.57 0.23 3 1021 0.48 3 1021 96 pct

where b1, b2, and b3 are constants. The values of these
constants were obtained by least-squares fitting of Eq. [14]
to the calculated 3-D MC results reported in this article. The
values of these constants, their standard errors, the standard

Fig. 5—The grain size distribution as an average of five runs from thedeviation of f, and the confidence level of f are presented
present simulation for various times.in Table II.

Louat,[6] on the other hand, argued that the boundary
motion is a random process and consideredonly the diffusion
term in Eq. [11] to solve for the grain-size distribution.
Assuming D to be independent of R and the distribution to
be time invariant, he obtained the following expression for
the grain-size distribution:

f 5
C5 Re2

R 2

4Dt

Dt 3/2 [15]

where C5 is a constant. The value of Ravg considered by
Louat[6] is given by

Ravg 5 ! 2pDt [16]

Combining Eq. [15] and [16], the following expression for
f is obtained:

f 5 b
R

Ravg
e2a1 R

Ravg2
2

[17] Fig. 6—The distribution of number of sides of a grain from the present
simulation compared with Hu’s[9] data for zone-refined iron.

where b and a are constants. The values of these constants
were obtained by least-squares fitting of the 3-D MC simula- It can be observed that the calculated results are comparabletion results in Eq. [17]. The values of these constants, their with the experimental data.[9] It is also found that the peakstandard errors, the standard deviation of f, and the confi-

frequency of occurrence corresponds to the grains with fivedence level of f are presented in Table II. edges, althoughmany grains with more than five edges exist.From Figure 4(c), it can be observed that the Louat’s[6]

The frequency increases rapidly for a small number of graindistribution appears to give a slightly better fit to the calcu-
edges and decreases when the number of edges exceedslated MC results than Feltham’s[5] log-normal distribution. six. The calculated average edges per grain is found to beAnderson et al.[8] attributed the difference between their approximately equal to six. This number is consistent withresults to the fact that Feltham assumed spherical grains, the general topological rule,[26] which has also been theoreti-whereas Louat considered polygonal grains. Even though cally derived by Mullins[27] and Neumann.[28] Based on theLouat’s distribution gives a good fit, the mean-field theories behavior of individual grains and the uniform-boundaryof both Feltham and Louat neglected the effect of neigh- model, they obtained a correlation between grain-growthboring grains. Furthermore, topological considerations were kinetics and the topological class of individual grains:[4]

ignored in these theories.
Figure 5 shows the grain-size distribution frequency as a dR

dt
5

Mg
R 1n6 2 12 [18]function of average grain size for 125, 420, and 625 minutes

(7500, 25200, and 37,500 seconds). Two interesting points
may be noted from Figure 5. First, the position of the peaks where M is the mobility of the grain boundary, g is the

grain-boundary energy, and n is the average number of grainshifts toward higher average grain sizes with time, even
though the height of the peaks remains almost the same. edges. To conserve the total area, the sum of R ? dR/dt over

all the grains must be zero. Thus, according to Eq. [18], theSecond, the frequency of smaller grains decreases with time,
because the larger grains grow with time at the expense of average number of edges should be six. Therefore, grains

with less than six edges will shrink, and grains with moresmaller grains.
Figure 6 shows the frequency distribution of the number than six edges will grow.

The shape of the topological-class distribution curve inof grain edges, also called the topological-class distribution.
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Fig. 8—Average number of sides of neighboring grains, nn , as a functionFig. 7—The average grain size as a function of number of sides of a grain,
of the inverse of number of sides, 1/nr , for 125 and 625 min (7500 andn, for 125 min (7500 s) and 625 min (37,500 s) at 923 K for the plane Z
37,500 s) at 923 K for the Z 5 2.64-mm plane.5 2.64 mm. Also represented are the average grain sizes (Ravg) for 125

min (7500 s) and 625 min (37,500 s) taken from Fig. 3.

the logarithm of the average grain size increased linearlyFigure 6 is essentially similar to the grain-size distribution
with the logarithmof time, except at very short times (,2000plot in Figure 4(c), suggesting that the average number of
seconds). The rate of increase of the average grain sizesides per grain and the grain size may be related. Figure 7
was almost the same as the rate of decrease of the netshows linear relationships when the grain size is plotted as
grain perimeter.a function of the average number of sides per grain. A similar

Both the calculated grain-size distribution and topologi-linear relation was observed by Feltham[5] for annealed tin.
cal-class distributions did not change with time. The maxi-The horizontal dashed lines in the figure indicate the calcu-
mum grain size was about 2.5 to 3.5 times the average size.lated average grain size for the two times taken from Figure
The topological-class distribution function exhibited a peak3. It can be seen that the average grain size corresponds to
when the grains had five edges, indicating that most grainsgrains with six sides.
were five sided. The average number of edges per grainIn order to examine the effect of the geometry of the
was found to be six, which is consistent with theoreticalneighboring grains on grain topology, a plot of the average
predictions. The average number of sides of the neighboringnumber of sides of neighboring grains (nn) and the inverse
grains ranged between five and eight. A linear relationshipof the number of sides of grains (1/nr) is presented in Figure
was found between the average grain size and the average8. The values on the Y-axis are the average of the distribution
number of sides of grains. The experimental grain sizes,for each topological class. Linear relations of the following
grain-size distributions,and topological-classdistributions[9]

form were obtained by a linear least-squares fit to the data
agreed well with the simulated results. The agreementaveraged from five runs.
between the calculated and independent experimental[9]

results indicated significant promise for understanding grainnn 5 H1 1
H2

nr
[19]

growth from 3-D MC calculations.

where the valuesof H1 and H2 are 4.92 and 8.16, respectively,
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