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ABSTRACT 

Fusion welding is characterized by various complex physical processes where the 

heat source interacts with the material leading to rapid heating, formation of the weld 

pool, vigorous circulation of the liquid material in the pool, heat transfer in the entire 

weldment, and solidification of the molten material. All these physical processes have a 

profound impact on the mass transport in the weldment. Mass transport during fusion 

welding has a significant impact on various weld features like the weld pool geometry 

and the creation of weld defects like liquation cracking. For example, surface active 

elements like sulfur alter the fluid convection pattern in the weld pool, and lead to a high 

depth to width ratio under favorable welding conditions. Furthermore, the fluid 

convection pattern becomes very complex when two plates with different amounts of 

surface active elements such as sulfur are welded together. Similarly, during gas metal 

arc (GMA) welding of aluminum copper alloys, the amount of solute (copper) in the 

solidifying weld metal is a key factor in determining the susceptibility of the weld to 

liquation cracking. In the past two decades, numerical transport phenomena based models 

have provided useful information about the thermal cycles and weld pool geometry. 

However, no effort has been made to apply these concepts to design weld consumables, 

to study the weld bead shape on welding two plates with different sulfur contents and to 

tailor weld pool geometry to specified dimensions. The present research focuses on these 

unexplored areas. The research proposed here seeks to develop a quantitative 

understanding of mass transport during fusion welding, with special emphasis on the role 

of surface active elements and the effect of solute distribution on weld defects like 

liquation cracking. A comprehensive model, incorporating numerical three-dimensional 

calculations of temperature and velocity fields and solute distribution in the weld pool is 

developed for the proposed quantitative study.  

The currently available numerical transport phenomena based models are faced 

with some major difficulties including lack of reliability of output and limited utility 

because of the ability to go only in the forward direction. The output of these models is 

not generally reliable because of the presence of some uncertain input parameters such as 
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arc efficiency. Furthermore, these models cannot go backwards, i.e., calculate multiple 

combinations of welding process variables such as current, voltage and welding speed to 

obtain a target weld attribute such as weld pool geometry. Also, these models are 

complex, require specialized training to develop and test, and consume a large amount of 

computer time to run. These shortcomings of the numerical transport phenomena based 

models are addressed in the present thesis research. New methodologies are developed in 

the present study where the reliability of output of the numerical transport phenomena 

based model is enhanced by developing a computational procedure, where the uncertain 

input parameters of the model are optimized by combining it with a genetic algorithm 

optimization model and limited volume of experimental data. The resulting numerical 

model providing more reliable output is validated by comparing its predictions of weld 

pool geometry with the corresponding experimental results. In order to reduce the 

computation time a neural network, trained by data generated from the numerical 

transport phenomena based model, is developed in the present study. Next, the neural 

network is combined with a genetic algorithm to go backwards, i.e., find multiple 

combinations of welding variables to obtain a target weld geometry. Finally, this model is 

applied to study solute distribution in the weld pool when joining two steel plates with 

different sulfur contents, and to determine the copper content of the solidifying weld 

metal in aluminum-copper alloys welded with different copper containing filler metals. 

The study identifies the factors that affect the weld pool geometry on joining two plates 

with different sulfur contents, and predicts the susceptibility of an aluminum-copper alloy 

GMA weld to liquation cracking. 

The specific contributions of the present thesis research include (i) development 

of a numerical solute transport model for fusion welding; (ii) improving the reliability of 

output of the numerical model; (iii) achieving computational efficiency and economy by 

developing a neural network trained by data generated by the numerical model; (iv) 

creating a bi-directional methodology where a target weld attribute like weld pool 

geometry can be attained via multiple combinations of input process parameters like arc 

current, voltage and welding speed; (v) calculating sulfur distribution during gas tungsten 

arc welding of stainless steel plates with different sulfur contents and predicting the 
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resulting weld pool geometry; and (vi) calculating copper distribution during gas metal 

arc welding of aluminum-copper alloys by incorporating the heat and mass addition from 

filler metal and a non-equilibrium solidification model, and using the copper content of 

the mushy zone to predict the occurrence of liquation cracking.     
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Chapter 1 
 

Introduction 
 

1.1 General Background 
 

In the last two decades, the application of numerical transport phenomena has 

provided useful information about the thermal cycles and weld pool geometry in both 

linear and spot welding [ 1- 19]. The fluid flow pattern in the weld pool as well as 

important variables like temperature field, cooling rate, solidification rate, mode of 

solidification and temperature gradients have been well understood [ 13]. Computed 

temperatures have been used to understand the evolution of phase composition [ 5, 16], 

grain structure [ 7, 8], inclusion structure [ 17], and weld metal composition change owing 

to both the evaporation of alloying elements and the dissolution of gases [ 9, 14]. In 

contrast, very little has been done to understand solute transport in the weld pool. In 

many cases the final solute distribution in the weldment has a significant impact on its 

properties. For example, when stainless steel containing surface active elements like 

sulfur is welded, the temperature coefficient of surface tension, dγ/dT, often becomes 

positive, causing the liquid metal to flow from the periphery to the center of the weld 

pool. This fluid motion brings more heat to the center of the weld pool resulting in a deep 

and narrow weld bead. This property of sulfur containing stainless steels has been widely 

used to achieve good weldability with higher depth to width (D/W) ratios. This 

phenomenon has been addressed in the literature, both by conducting experiments and 

using mathematical models, for welding of two plates with same sulfur content [ 20- 31]. 

An important question that follows the above example is what would happen if 

two plates being welded have different sulfur contents. The available models cannot 

address these problems. Such situations are common in the nuclear waste management 

industry where stabilization, packaging and storage of plutonium-bearing materials 

involve closure welding of 316 stainless steel (SS) container (0.03 wt% sulfur) with 416 

SS lid (>0.15 wt% sulfur) [ 32]. The final closure of the container must be leak-tight and 

structurally sound [ 32- 34]. Another example is the tungsten inert gas (TIG) welding of 

small diameter stainless steel tubing for instrumentation systems in CANDU (Canadian 
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Deuterium Uranium) nuclear reactors [ 31]. Experiments have shown that during welding 

of two stainless steel plates with different sulfur contents the point of maximum 

penetration shifts towards the plate with lower sulfur content [ 29, 31]. The weld bead shift 

is sometimes so severe that there is very little melting of the piece with higher sulfur 

content, i.e., lack-of-fusion defect occurs at the interface, resulting in improper joining of 

the two pieces [ 31]. Since many of the instrumentation systems in a nuclear reactor 

contain the primary coolant, insufficient fusion of the interface is unacceptable [ 31]. 

Heiple et al. [ 24] gave a qualitative explanation for the shifting of the weld bead 

based on their surface tension driven fluid flow model. They stated that the plate with 

lower sulfur content has relatively higher surface tension than the one with higher sulfur 

content. The result is a net surface tension gradient across the weld pool leading to 

surface fluid flow toward the side of the plate with less sulfur. This flow pattern causes 

maximum penetration in the plates containing less sulfur. However, once the weld pool is 

formed, liquid metal in the weld pool circulates vigorously causing mixing of sulfur from 

the two plates. Actual surface tension gradient should depend on the final sulfur 

distribution in the weld pool. Furthermore, quantitative modeling of the process is 

necessary to predict the actual location of the weld bead when welding two plates with 

different sulfur contents.  

Another example illustrating the importance of solute transport in the weld pool is 

observed during gas metal arc (GMA) welding of aluminum-copper alloys using filler 

metals with different copper contents. Here, the distribution of copper in the weld pool is 

affected by several factors including mixing of the base metal with the filler metal, non-

equilibrium solute partitioning during solidification and convective solute transport. The 

copper distribution in the weld pool decides the solid fraction of the solidifying weld 

metal, which is a key factor governing the occurrence of liquation cracking [ 35- 45] in 

aluminum-copper alloy welds. Huang and Kou [ 35] found that the partially melted zone 

(PMZ) of the aluminum alloys becomes prone to liquation cracking when its solid 

fraction becomes lower than that of the solidifying weld metal. They [ 35] argued that 

lower solid fraction in the PMZ makes this region weaker than the weld metal, making 

the PMZ vulnerable to liquation cracking. Accurate prediction of liquation cracking 
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susceptibility in aluminum-copper alloys requires thorough investigation of the complex 

coupling of momentum, heat and solute transport under non-equilibrium conditions 

during GMA welding. 

Though numerical transport phenomena based models have provided significant 

insights into the welding process in the past two decades, the temperature fields (and 

therefore, fusion zone geometry) and thermal cycles predicted by these models are not 

always reliable, i.e., they do not always agree with the experimental results. The 

disagreement between the computed and experimentally determined temperature fields 

can be primarily attributed to the uncertainty of the values of some of the input 

parameters, which cannot be prescribed based on either scientific principles or welding 

conditions. In general there are five uncertain input parameters, i.e., arc efficiency, arc 

radius, power distribution factor, and the effective thermal conductivity and viscosity of 

the liquid metal. Although the values of arc efficiency have been experimentally 

measured for many welding conditions, the reported values vary significantly, even for 

apparently similar welding conditions. Measured values of the arc radius and power 

distribution factor depend on welding conditions and, as a result, their values cannot be 

accurately specified except for certain narrow windows of welding conditions. Values of 

the effective thermal conductivity and viscosity are important, since they allow accurate 

modeling of the high rates of transport of heat and mass in systems with strong 

fluctuating velocities, such as small weld pools with very strong convection currents. The 

values of effective conductivity and viscosity are properties of the specific welding 

system, and not the inherent physical properties of the liquid metal [ 14], and the values of 

these parameters significantly affect the results of numerical calculations. A systematic 

global search for the uncertain input parameters is needed so that the computed 

temperature profiles always agree with the corresponding experimentally determined 

values. Genetic algorithm (GA) is a powerful optimization technique that can search for 

global optimal solution independent of the initial guessed values [ 46- 49]. Therefore, GA 

can be used to estimate the uncertain input parameters. 

Another shortcoming of the current generation of numerical transport phenomena 

based models is that they cannot determine alternative pathways to achieve a target weld 
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attribute. The desired depth and width of the weld pool and the cooling rate are often 

specified to achieve a structurally sound and reliable welded joint. Therefore, an 

important requirement is to determine the values of the welding variables necessary for 

achieving a given weld attribute, such as the weld geometry. In practice a particular weld 

attribute may be obtained through multiple combinations of welding variables. The 

forward numerical model for the calculation of temperature and velocity fields and solute 

distribution needs to be systematically interrogated to estimate the optimized values of 

welding variable sets that can produce a specified weld geometry. However, this 

investigation is very time consuming as it involves multiple runs of the numerical model. 

The numerical transport phenomena based calculations are complex, and are unsuitable in 

situations where rapid calculations are desired. A practical solution to this problem is to 

develop a neural network that is trained with the data generated by a numerical transport 

phenomena based model. Neural network models are powerful non-linear regression 

analysis methods [ 50- 54] that can relate input variables like welding process parameters 

and material properties with weld characteristics such as weld pool geometry, and 

provide high computational speed.  

 

In summary, the solute distribution in a weld has significant impact on its 

properties such as weld pool geometry and occurrence of weld defects like liquation 

cracking. A comprehensive transport phenomena based model is needed to accurately 

predict solute distribution in the weld, which can be applied to design weld consumables, 

to study the weld bead shape on welding two plates with different sulfur contents and to 

tailor weld pool geometry to specified dimensions. Furthermore, new methodologies need 

to be developed where the reliability of the output of the transport phenomena based 

models is increased by combining these models with genetic algorithm based 

optimization routines. 

 
1.2 Research Objectives and Methodology 

This doctoral research focuses on studying mass transport during fusion welding 

to determine the distribution of solutes in the weld, and their impact on the weld pool 
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geometry and consumable design to avoid occurrence of weld defects like liquation 

cracking. In order to achieve this goal, the specific tasks undertaken and the methodology 

used in the present thesis research are shown in Fig. 1.1. In short, the figure shows the 

following specific accomplishments: 

1. Integrating three-dimensional solute transport equations with an already 

existing three-dimensional numerical heat transfer and fluid flow model, in our research 

group at Penn State, to understand the complex coupling of momentum, heat and solute 

transport during gas tungsten arc (GTA) fusion welding. This model provides 

temperature field, velocity fields and solute distribution in the entire GTA weld. 

2. Improving the reliability of the output of the numerical transport phenomena 

based models by estimating the values of five uncertain input parameters, i.e., arc 

efficiency, arc radius, arc power distribution factor, effective thermal conductivity and 

viscosity of liquid by using a real number based genetic algorithm (GA) and a limited 

volume of experimental data. The ability of the GA to find the global optimal solution 

independent of the initial guessed values [ 46- 49] makes it appropriate for estimating 

these uncertain input parameters. 

3. Developing a computational procedure using GA to systematically search for 

multiple sets of welding variables of arc current, voltage and welding speed to obtain a 

specified weld geometry. The property of GA to provide a population of solutions makes 

such a systematic search possible [ 46- 49]. Several neural networks have been developed 

that are trained with the data generated by the numerical transport phenomena based 

model. Replacing the forward numerical model in this computational procedure by these 

neural networks has led to significant computational economy. 

The numerical transport phenomena based model should be flexible and readily 

modifiable for application in different welding conditions and materials. The model has 

been tested on two systems in the present study, which include: 

4. Evolution of weld pool geometry during GTA welding of stainless steel plates 

having same and different sulfur contents. 

5. Adapting the numerical transport phenomena based model to gas metal arc 

(GMA) welding, by considering heat and solute intake due to filler metal addition, and 
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integrating a non-equilibrium solidification model. This model provides the non-

equilibrium solute distribution in the solidifying weld metal, which is used for the design 

of consumables to avoid liquation cracking during GMA welding of Al-6.3%Cu alloy 

using filler metals with different copper content. 
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Fig. 1.1. List of tasks in the present thesis research. 
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1.3 Thesis Structure 

The thesis consists of eight chapters. Chapter 1 describes the overall subject 

matter, outlines of the research objectives and methodology, and the thesis contents. 

The available knowledge for simulating convective solute transport in fusion 

welding is reviewed in chapter 2. At first, the current understanding of transport 

processes including energy absorption, liquid convection and driving forces, turbulence is 

examined, and the effect of surface active elements on weld pool convection is reviewed. 

Secondly, the factors contributing to solute transport during GMA welding, and the 

relation between the resulting solute distribution and liquation cracking, are reviewed. 

Next, the resources available for enhancing the reliability of output of the numerical 

transport phenomena based models are presented, and the techniques that can make these 

models go backwards are reviewed. Finally, the possibility of developing a neural 

network model for fusion welding is explored in order to reduce the time of calculations.  

In chapter 3 three-dimensional solute transport equations are integrated with an 

already existing three-dimensional numerical heat transfer and fluid flow model, to 

understand the complex coupling of momentum, heat and solute transport during gas 

tungsten arc (GTA) fusion welding. This model provides the temperature field, velocity 

fields and solute distribution in the entire GTA weld. Next, a computational procedure is 

developed where the transport phenomena based model is combined with a genetic 

algorithm (GA) and a limited volume of experimental data. This computational procedure 

is used to improve the reliability of output of the transport phenomena based model, by 

optimizing the values of its uncertain input parameters. The calculated and experimental 

weld pool geometry for GTA welding of stainless steel is compared to examine the 

reliability of the computational procedure. 

In chapter 4, six neural networks have been developed for the GTA welding of 

stainless steel, in order to achieve computational economy in conducting calculations for 

fusion welding. The neural networks relate 17 input variables, which include welding 

process parameters and important material properties, with important output parameters 

such as weld pool geometry and peak temperature. A hybrid optimization scheme, 

including a gradient descent method and a genetic algorithm, is found to be very effective 
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in proper training of the networks. The accuracy of neural networks is ascertained by 

comparing their predictions with the corresponding results from the numerical transport 

phenomena based model. 

In chapter 5, a computational procedure has been developed using a genetic 

algorithm and the neural networks to go backwards, i.e., systematically search for 

multiple sets of welding variables of arc current, voltage and welding speed to obtain a 

specified weld geometry. The use of neural networks in place of a heat transfer and fluid 

flow model significantly expedites the computational task. Several sets of welding 

variables with significantly different values of current, voltage and welding speed are 

found for a target weld geometry. Good agreement between the model predictions and the 

experimental data of weld pool penetration and width for various welding conditions 

shows that this approach is promising. 

In chapter 6, the effect of surface active element, sulfur, on the evolution of weld 

pool geometry in stainless steel GTA welds is examined. The numerical transport 

phenomena based model is used to calculate the weld pool geometry when joining two 

plates with same and different sulfur contents. The influence of weld pool top surface 

sulfur distribution on weld pool convection and the shifting of the welding arc are 

identified as the two main factors contributing to the evolution of weld pool geometry 

when joining two plates with different sulfur contents. The calculated weld pool 

geometry is in fairly good agreement with the corresponding experimental results in all 

the cases.  

In chapter 7, the numerical transport phenomena based model has been adapted to 

calculate solute transport during GMA welding, by considering heat and solute intake due 

to filler metal addition, and integrating a non-equilibrium solidification model. This 

model provides the non-equilibrium solute distribution in the solidifying weld metal, 

which is used for the design of consumables, to avoid liquation cracking during GMA 

welding of Al-6.3wt%Cu alloy, using filler metals with different copper contents. The 

model predictions of liquation cracking susceptibility in Al-Cu alloy weldments are 

confirmed by independent experiments for various filler metal compositions. 
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Summary and conclusions of the present study are presented in chapter 8. The 

results presented in this thesis indicate that the solute distribution in fusion welds, and its 

impact on weld pool geometry and occurrence of weld defects like liquation cracking, 

can be quantitatively predicted by a numerical transport phenomena based model. 

Furthermore, new methodologies are developed where the reliability of output of the 

transport phenomena based models is increased, the speed of computation has been 

significantly enhanced by developing neural networks, and the weld pool can be tailored 

to specified dimensions. 
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Chapter 2 
 

Background 
 

This doctoral research focuses on studying mass transport during fusion welding 

to determine the distribution of solutes in the weld, and their impact on the weld pool 

geometry and consumable design to avoid occurrence of weld defects like liquation 

cracking. In particular, solute transport equations are introduced into an existing 

numerical heat and fluid flow to study the distribution of solute in the weld pool. This 

transport phenomena based model is used to understand the evolution of weld pool 

geometry during gas tungsten arc (GTA) welding of stainless steel plates having same 

and different sulfur contents, and the design of consumables to avoid liquation cracking 

during gas metal arc (GMA) welding of Al-6.3wt%Cu alloy using filler metals with 

different copper contents. Furthermore, new methodologies are developed in order to 

address some major problems associated with the currently available numerical transport 

phenomena based models. Firstly, the reliability of the output of the numerical transport 

phenomena based model is increased by combining this model with a genetic algorithm 

based optimization routine and a limited volume of experimental data. Secondly, a neural 

network, trained by data generated from the numerical transport phenomena based model, 

is developed in order to obtain the results in a reasonable time frame. Finally, the neural 

network is combined with a genetic algorithm to go backwards, i.e., find multiple 

combinations of welding variables to obtain a specific weld geometry. The following 

important problems and issues pertinent to the subject of this study are critically reviewed 

in this chapter. 

(1) Solute transport and distribution during fusion welding has a profound effect 

on the weld characteristics such as weld pool geometry and creation of weld defects like 

liquation cracking. However, not much attention has been paid in the literature to this 

important topic. Most of the studies to date are focused on understanding heat and fluid 

flow during welding, due to their importance in accurately calculating temperature and 

velocity fields in the weld. This section reviews the current understanding of heat and 

fluid flow during fusion welding, and the effect of surface active elements on weld pool 
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convection. This review is important as it presents the importance of convective heat 

transport in the weld pool, and prepares the basic foundation for conducting convective 

solute transport calculations in the present thesis research. The calculation procedure 

described in this section is readily applicable to GTA welding. 

(2) The GMA welding process is slightly more complex, due to the addition of a 

consumable electrode. The heated metal droplets from the electrode make a significant 

contribution to both the heat and solute transport in the weldment, and the resulting solute 

distribution plays a major role in the occurrence of weld defects like liquation cracking. 

This section reviews the factors contributing to solute transport during GMA welding, 

and the relation between solute distribution and liquation cracking. 

(3) Before a numerical transport phenomena based model is used to calculate 

mass transport during fusion welding, some major limitations of these models need to be 

addressed. The output of the currently available numerical transport phenomena based 

models is often not reliable mainly because of the uncertainty in the values of some of the 

input parameters like arc efficiency, arc radius, arc power distribution factor, effective 

thermal conductivity and effective viscosity of the liquid. A recourse to this problem is to 

calculate the optimized values of these parameters using some optimization routine and 

experimental data. Also, the current generation of numerical transport phenomena based 

models cannot go backwards, i.e., they cannot provide the welding process parameters 

such as current, voltage and welding speed, to obtain a target weld geometry. Genetic 

algorithms (GAs) are powerful optimization routines that can find the global optimal 

solution of a problem independent of the initial guessed values. The capabilities of GAs 

and their possible applications for solving the above mentioned problems of transport 

phenomena based models for fusion welding are reviewed in this chapter. 

(4) Another shortcoming of the numerical transport phenomena based models for 

fusion welding, which severely limits their use in the welding industry, is that they are 

complex, require specialized training to develop and test, and consume a large amount of 

computer time to run. A practical solution to this problem is to develop a neural network, 

which can relate input variables like welding process parameters and material properties 

with weld characteristics such as weld pool geometry, and at the same time provide high 
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computational speed. This chapter reviews the previous work done in this regard, and the 

problems and issues involved in developing a neural network for a complex problem like 

fusion welding. 

At the end of this chapter, several important unanswered questions pertinent to the 

present research are identified. Solving these unanswered questions is an important goal 

of the present thesis study, and details of the solution are presented in subsequent 

chapters. 

 

2.1 Transport Processes Occurring During Fusion Welding 
 The fusion welding process is schematically illustrated in Fig. 2.1 [ 1- 6]. Three 

distinct regions of the weld can be seen in this figure: the fusion zone (FZ), the heat 

affected zone (HAZ) and the base metal. During fusion welding, the heat source interacts 

with the base metal leading to a series of complex physical processes [ 1- 6]. The FZ 

undergoes melting and solidification. In the weld pool, the liquid metal circulates 

vigorously under the influence of electromagnetic, surface tension gradient and buoyancy 

forces. The spatial variation of surface tension due to temperature and composition 

gradients at the weld pool top surface often provides the main driving force for the 

convective flow, known as the Marangoni flow [ 3]. Surface active elements like sulfur 

significantly alter the spatial variation of surface tension and the resulting liquid 

convection pattern. It is well known that the convective heat flow affects the FZ 

geometry and the temperature distribution in the HAZ. However, the influence of 

convection on solute distribution in the weld pool has not been studied yet.  
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Fig. 2.1. Schematic plot depicting the fusion welding process. HAZ stands for Heat-
Affected Zone. 
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Various solid-state transformations can take place in the HAZ, which experiences 

significant thermal exposure during welding. Furthermore, the portions of HAZ close to 

the FZ may be liquated owing to the presence of low temperature eutectics [ 5]. This leads 

to the formation of a partially melted zone (PMZ), which plays a major role in the 

occurrence of weld defects like liquation cracking [ 5]. The base metal is unaffected by 

the welding process. During fusion welding, the complex physical processes take place in 

a very small area, usually of the order of a few millimeters. Since a large number of 

physical processes occur simultaneously during welding, it is often necessary to divide 

the complex welding process into a number of simple constituent parts. These parts 

include the interaction of the heat source and the weld pool, the heat transfer, fluid flow 

and solute transport in the weld pool, the evolution of FZ and HAZ microstructure, and 

the development of residual stress and distortion in the welds. The heat transfer, fluid 

flow and solute transport is of particular interest, since it provides the knowledge of 

temperature fields, velocity fields and solute distribution in the weldment, which is 

essential for understanding other physical processes such as the evolution of weld pool 

geometry, occurrence of weld defects, microstructural evolution and residual stress [ 1- 6]. 

Experimental observation of heat transfer, fluid flow and solute transport in the 

weld pool is very difficult. The measurement of temperatures in the weld pool by placing 

thermocouples is tough and inaccurate because of the small size of the weld pool and 

very high liquid temperatures [ 7- 14]. Indirect measurement methods such as infrared 

thermographic cameras [ 9, 13] are also not very accurate because many assumptions need 

to be made with respect to the dependence of emissivity on temperature, the associated 

angle, and the wavelength [ 11, 12]. In addition, during arc welding process the intense arc 

and plasma environment create additional complexity. As of now, there is no technique 

available that can reliably measure temperature within the molten pool. The measurement 

of liquid flow velocities and solute composition in the small and intensely heated weld 

pool is also difficult. Very few data have been reported on the measurement of liquid 

flow velocities in the weld pool [ 13, 15, 16] and almost all the available data on weld pool 

composition is for post-welded samples. Therefore, a practical recourse is to use 
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quantitative calculations to gain insights into the phenomena of heat transfer, fluid flow 

and solute transport during welding [ 14]. 

This section examines the current understanding of heat transfer, fluid flow and 

solute transport in the weld pool. Only a fraction of heat energy is actually absorbed by 

the base metal during fusion welding. The efficiency of energy absorption is an important 

parameter. Thus, the factors affecting the efficiency of energy absorption are discussed 

first. In the weld pool, the absorbed heat is transported both by convection and 

conduction. Therefore, the liquid convection and the forces driving it are also discussed. 

The turbulence in the weld pool is also reviewed because it may affect weld pool heat 

transfer. The conservation equations governing heat transfer, fluid flow and solute 

transport are then presented. Next, the numerical solution of these conservation equations 

using the control volume/finite difference method [ 17- 19] is discussed. At the end of this 

section, a summary of the previous work in the field of transport phenomena in simple 

systems is presented. 

 
2.1.1 Deposition of heat energy at weld top surface 

Since the distribution of heat input has a direct influence on the weld pool 

geometry, it is important to know how the heat energy is distributed on the weld top 

surface. For GTA welding, the following Gaussian distribution is widely used to account 

for the heat flux at the weld top surface [ 20- 22]. 
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where q is the heat flux at a given location at the weld top surface, r is the distance 

between the heat source and the specific location, d is a distribution factor, I and V are 

welding current and voltage, respectively, η is the arc efficiency and rb is a characteristic 

energy distribution parameter. Two typical values of d have been reported in the 

literature, i.e., 3.0 and 0.5. The d value of 0.5 was proposed by Tsai et al. [ 23] and Smartt 

et al. [ 24] based on experimental measurements. On the other hand, several weld models 

[ 20- 22, 25- 27] used the d value of 3.0. Depending on the arc length, electrode tip angle, 

and current, the distribution parameter (rb) is reported to vary in the range between 1.0 
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and 4.0 mm [ 23, 24]. Equation (2.1) indicates that if the values of d, η and rb are known, 

the heat flux at the weld top surface can be computed. The knowledge of the input heat 

flux is a necessary in order to calculate the heat dissipation in the weldment.  

It is noteworthy that although Eq. (2.1) was originally proposed for GTA welding, 

similar expressions have also been used to describe the heat flux at the weld top surface 

for GMA [ 28, 29] welding. 

 
2.1.1.1 Efficiency of energy absorption 

Only a fraction of energy is transferred from the heat source to the workpiece 

during welding,. The amount of energy transferred is important since it directly affects 

the weld pool geometry. The physical phenomena that influence the absorption of energy 

are unique to each welding process [ 2 7]. 

 For arc welding, the fraction of the arc energy that is transferred to the workpiece 

is defined by arc efficiency (η), which is given as [ 2]: 

VI
mqq)n1(q

1 wpe +−+
−=η  (2.2) 

where qe is the rate of heat transferred to the electrode from the welding arc, n is the 

proportion of heat output from the arc column that is transferred into the workpiece, qp is 

the rate of heat loss by radiation and convection from the arc column, m is the fraction of 

absorbed energy that is radiated away and lost, qw is the rate of heat absorbed by the 

workpiece, and I and V are welding current and voltage, respectively. 

In cases where a consumable electrode is used, such as in gas metal arc (GMA) 

welding, qe is also transferred to the workpiece and as a result, arc efficiency is given as 

[ 2]: 

VI
mqq)n1(

1 wp +−
−=η  (2.3) 

It is noteworthy that although Eqs. (2.2) and (2.3) are useful in explaining the manner in 

which various types of heat loss affect arc efficiency, it is very difficult to evaluate the 

values of qe, qp, qw, n and m from theoretical considerations. Therefore, commonly the 

value of arc efficiency is determined experimentally under various welding conditions. In 
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the literature, experimentally measured arc efficiency values are available for various arc 

welding processes including submerged arc welding (SAW), gas tungsten arc welding 

(GTAW) and gas metal arc welding (GMAW). Depending on the welding process used, 

the measured arc efficiency values vary from 20% to over 95% [ 7, 14]. 

Tsai and Eagar [ 23] experimentally measured the arc efficiency and the 

distribution of heat flux as a function of various welding parameters for a gas tungsten 

arc. These welding parameters included the welding current, electrode tip angle, arc 

length, and shielding gas. In their experiments, the current changed from 100 to 280 A, 

the electrode tip angel changed from 30° to 120°, the arc length varied from 2 to 9 mm, 

and three different shielding gases were used: pure argon, 25% of helium + 75% of 

argon, and 50% of helium + 50% of argon. They found that the arc energy distribution 

parameter, rb, had strong dependence on the welding current, shielding gas and arc 

length, but did not change much with the electrode tip angle. For the welding conditions 

used in their experiments, the value of rb varied from 1.5 to 3.6 mm. 

The arc efficiency for GMAW is usually higher than that for GTAW, since a 

fraction of energy lost to the electrode is transferred into the workpiece in the form of 

superheated metal droplets. The droplet transfer is a unique feature in GMAW, and it is 

often responsible for the finger penetration observed in the GMA welds. The droplet heat 

transfer will be reviewed in a later section. 

The aforementioned discussion reveals that no unique value can be found in the 

literature for the three important input parameters of d, η and rb for a given welding 

system. Therefore, these three parameters can be regarded as uncertain input parameters 

in numerical transport phenomena based calculations of fusion welding. Appropriate 

values of these parameters need to be known for the reliable calculation of input heat flux 

during welding. 

 
2.1.2 Convective heat transfer in the weld pool 

 

Convective heat transfer is very important because in many cases it has a 

profound impact on the shape and size of the weld pool and the temperature distribution 

in the entire weld [ 2, 4- 7]. The liquid convection is driven by the surface tension gradient, 



 22

buoyancy, and when electric current is used, electromagnetic forces [ 2, 4- 7]. Since the 

calculation of convective heat transfer requires the solution of the equations of 

conservation of mass, momentum, heat and solute and is highly complicated, numerical 

solution is often utilized. In order to accurately predict the convective heat transfer in the 

weld pool, the effect of various driving forces must be properly incorporated into the 

momentum equation. 

 

2.1.2.1 Electromagnetic force 
 

Fig. 2.2 is a schematic plot that shows the important driving forces in the weld 

pool and the resulting liquid flow pattern. The electromagnetic force, also called Lorentz 

Force, is caused by the electric current field together with the magnetic field induced by it 

in the metal workpiece. As shown in Fig. 2.2(a), the direction of the electromagnetic 

force is downward and inward. As a result, at the top surface of the weld pool the melt 

flows from the periphery to the center, and at the center the liquid metal is driven 

downwards, leading to a deep and narrow weld pool. The electromagnetic force ( emfF
r

) 

can be expressed as [ 30- 32]: 

BJFemf

rrr
×=  (2.4) 

where B
r

 is the magnetic flux vector and J
r

 is the current density vector in the weld pool. 
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Fig. 2.2. Various driving forces and the resulting liquid convection in the weld pool 
[ 7, 33]: (a) electromagnetic force, (b) surface tension gradient force with negative ∂γ/∂T, 
(c) surface tension gradient force with positive ∂γ/∂T, and (d) buoyancy force. ∂γ/∂T is 
the temperature coefficient of surface tension. 

(a) 

(b) ∂γ/∂T < 0 

(c) 

(d) 

Base metal 

Weld pool 

Liquid convection 

∂γ/∂T > 0 
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Comprehensive three-dimensional calculations of J
r

 and B
r

 fields are needed for 

accurate determination of the electromagnetic force in the weld pool. Kou and Sun [ 31] 

obtained the following analytical expressions for J
r

 and B
r

 fields by solving Maxwell’s 

equations in an axis-symmetric system with Magneto-hydrodynamics (MHD) 

approximation. 
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where Jz is the vertical component of the current density, r is the radial distance from the 

arc center, I is the current, σj is the effective current radius of the arc, J0 is the Bessel 

function of zero order and first kind, z is the vertical distance from the top surface, c is 

the thickness of the workpiece, Jr is the radial component of current density, J1 is the first 

kind of Bessel function of first order, Bθ is the angular component of the magnetic field, 

and µm is the magnetic permeability of the material. The radial and the axial components 

of the magnetic flux, Br and Bz, are assumed to be zero. Once the J
r

 and B
r

 fields are 

known, the electromagnetic force in the weld pool can be computed using Eq. (2.4). 

 

2.1.2.2 Marangoni shear stress and the effect of surface active elements 

Surface tension (γ) is a thermo-physical property of liquid metal. The spatial 

gradient of surface tension is a stress known as the Marangoni shear stress. This stress 

arises due to spatial variation of temperature and composition, which can be expressed as: 

r
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Cr
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T ∂
∂

∂
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=τ  (2.8) 

where τ is the shear stress due to surface tension, T is the temperature, r is the distance 

along the surface from the heat source, and C is the concentration of surface active 

element. When the materials being welded either have no surface active element or have 
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the same composition of surface active element throughout, then the concentration 

gradient, ∂C/∂r, is zero, and the difference in surface tension is due to the spatial 

temperature variation alone. In other words, the shear stress depends only on ∂γ/∂T and 

the spatial temperature gradient ∂T/∂r at the pool surface. 

In the absence of a surface active element, the temperature coefficient of surface 

tension, ∂γ/∂T, for many materials is less than zero, i.e., the higher the temperature, the 

lower the surface tension. Hence, at the weld pool top surface, the liquid metal is pulled 

radially outward by the higher surface tension liquid metal at the pool edge [ 7, 33- 39]. 

This leads to a wide and shallow weld pool, as shown in Fig. 2.2(b). If some surface 

active elements such as sulfur and oxygen are present in the weld pool in a small yet 

significant amounts, then the value of ∂γ/∂T can become positive [ 7,  33- 39]. For liquid 

metal with a positive value of ∂γ/∂T, the liquid is pulled radially inwards by the high 

surface tension liquid at the center of the weld pool. This leads to a deep and narrow weld 

pool as shown in Fig. 2.2(c). 

Sahoo et al. [ 35] determined surface tension, γ, as a function of both temperature 

and activity of surface active element as: 
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where γm is the surface tension of the pure metal at melting point, Tm is the melting point 

of the material, ai is the activity of the surface active element, i, A is negative of dγ/dT for 

pure metal, Γs is the surface excess at saturation, k1 is the entropy factor, and ∆H0 is the 

standard enthalpy of adsorption. By differentiating Eq. (2.9) with respect to temperature, 

they [ 35] obtained the expression for dγ/dT as a function of both temperature and activity 

of surface active element as:  
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where m
iH∆ is the partial molar enthalpy of mixing of surface active element, i, in the 

solution. 
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Pitscheneder et al. [ 34] used Eqs. (2.9) and (2.11) to analyze the variation of 

surface tension, γ, and dγ/dT, respectively, with both temperature and activity of surface 

active element sulfur, in iron-sulfur (Fe-S) system. The variation of surface tension of the 

alloy with temperature and sulfur activity is shown in Fig. 2.3(a). It can be seen that the 

surface tension of the alloy is a strong function of both the factors. The surface tension 

decreases with increase in sulfur activity for a given temperature. For a given sulfur 

activity having a value close to zero, the surface tension decreases continuously with 

increase in temperature, leading to a negative slope, i.e., negative dγ/dT. However, at 

significantly high values of sulfur activity, surface tension first increases and then 

decreases with temperature, leading to a change in the value of dγ/dT from positive to 

negative. The variation of dγ/dT with temperature for three different values of sulfur 

activity is presented in Fig. 2.3(b) [ 34]. The figure shows a significant difference in dγ/dT 

for the three compositions. 

Pitscheneder et al. [ 34] used a heat transfer and fluid flow model and Eq. (2.11) to 

study the effect of sulfur content and heat input on the weld pool geometry. The 

comparison between the predicted and measured cross sections of steel welds containing 

20 and 150 parts per million (ppm) of sulfur, which were laser welded under different 

powers is shown in Fig. 2.4. It can be seen that at a laser power of 1.9 kW, the pool 

geometries in two steels were similar. In contrast, when the laser power increased to 5.2 

kW, the weld containing 150 ppm sulfur had a much deeper penetration than that 

containing 20 ppm sulfur. They [ 34] explained the observed results based on the direction 

of the convection dominant heat transport in the weld pool. At the laser power of 1.9 kW, 

the weld pool and the liquid velocities were small. The maximum values of the Peclet 

number, which gives the ratio of the convective to conductive heat transport, for the steel 

weld pools with 20 and 150 ppm sulfur were 0.18 and 0.91, respectively. Such low Peclet 

number indicated that conduction was the dominant mechanism for heat dissipation in the 

weld pool. In other words, the direction of the liquid flow was not important in 

determining the weld pool shape. As a result, there were no significant differences 

between the weld pool geometries for steels containing 20 and 150 ppm sulfur. On the 

other hand, at the laser power of 5.2 kW, the values of Peclet number were greater than 
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200. Such high Peclet numbers indicated that convection was the dominant mode of heat 

transport in the weld pool. As a result, the weld pool geometry was largely determined by 

the direction of the liquid flow. For the sulfur content of 20 ppm, the value of ∂γ/∂T was 

negative, which resulted in an outward flow and consequently a shallow and wide pool. 

For the sulfur content of 150 ppm, the value of ∂γ/∂T was positive in majority of the weld 

pool, and the convection pattern was radially inward. Hence, the convective heat 

transport in the downward direction resulted in a deep weld penetration. The good 

agreement between the calculated and measured weld pool geometries, shown in Fig. 2.4, 

indicated that the role of sulfur on the weld pool geometry could be reasonably predicted 

using Eq. (2.11) and the heat transfer and fluid flow model. 

In all the above mentioned studies, the concentration of sulfur was the same 

throughout the welded materials. However, when the two plates being welded have 

different sulfur contents, the weld geometry evolves in a very unique way. Such 

situations are common in the nuclear waste management industry, where stabilization, 

packaging and storage of plutonium-bearing materials involve closure welding of 316 

stainless steel (SS) container (0.03 wt% sulfur) with 416 SS lid (>0.15 wt% sulfur) [ 40]. 

The final closure of the container must be leak-tight and structurally sound [ 40- 42]. 

Another example is the tungsten inert gas (TIG) welding of small diameter 304L stainless 

steel tubing for instrumentation systems in CANDU (Canadian Deuterium Uranium) 

nuclear reactors [ 43]. Fig. 2.5 shows the results of one such experiment, where full 

penetration welds were desired when joining two tubes with same and different sulfur 

contents [ 43]. The results in Fig. 2.5(a) and (b) are consistent with the aforementioned 

discussion, i.e., higher penetration is obtained in high sulfur containing materials. 

Furthermore, Fig. 2.5(a) was acceptable as full-penetration weld was obtained, and Fig. 

2.5(b) was unacceptable because full penetration weld was not formed. Thus, an optimum 

level of sulfur content was required in order to get an acceptable full penetration weld as 

shown in Fig. 2.5(a). However, there were some situations where the materials in Fig. 

2.5(a) and Fig. 2.5(b) needed to be welded together, as shown in Fig. 2.5(c). Tinkler et al. 

[ 43] observed that when low sulfur tubing was joined to high sulfur tubing, as shown in 

Fig. 2.5(c), the weld shifted markedly towards the low sulfur side. As a result there was 
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very little melting of the piece with high sulfur content, i.e., lack-of-fusion defect 

occurred at the interface, resulting in improper joining of the two tubes [ 43] and 

unacceptable weld. Since many of the instrumentation systems in a nuclear reactor 

contain the primary coolant, insufficient fusion of the interface was unacceptable [ 43].  

Heiple et al. [ 37] gave a qualitative explanation for the shifting of the weld bead 

based on their surface tension driven fluid flow model [ 35, 36]. They stated that the tube 

with lower sulfur content has relatively higher surface tension than the one with higher 

sulfur content. The result is a net surface tension gradient across the weld pool leading to 

surface fluid flow toward the side of the tube with less sulfur. This flow pattern causes 

maximum penetration in the plates containing less sulfur. However, once the weld pool is 

formed, liquid metal in the weld pool circulates vigorously causing mixing of sulfur from 

the two plates. Actual surface tension gradient should depend on the final sulfur 

distribution in the weld pool. Also, during a similar experiment, Rollin et al. [ 44] 

observed that the welding arc was displaced towards the low sulfur side. They stated that 

the arc shift should also be a contributing factor to the weld bead shift, along with the 

surface tension driven fluid flow. A thorough quantitative modeling effort is still lacking 

in the literature, which can take into account all the factors affecting weld bead shift, and 

predict the actual location of the weld bead when joining two plates with different sulfur 

contents. 
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Fig. 2.3. Variation of (a) surface tension of Fe-S as a function of temperature and sulfur 
activity; (b) dγ/dT of Fe-S as a function of temperature for samples containing 20, 40 and 
150 ppm sulfur [ 34]. 

(a) 

(b) 
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Fig. 2.4. Comparison between the calculated and measured weld pool geometry for 
various sulfur contents and heat inputs [ 34]: (a) 20 ppm and 1.9 kW, (b) 150 ppm and 1.9 
kW, (c) 20 ppm and 5.2 kW, and (d) 150 ppm and 5.2 kW.  

 

 

(a) (b)

(c) (d)
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Fig. 2.5. Effect on the weld pool geometry [ 43] when welding two tubes with (a) same 
sulfur content of approximately 90 ppm (Heat A), which is relatively high; (b) same 
sulfur content of less that 30 ppm (Heat C), which is relatively low; and (c) different 
sulfur contents, i.e., welding Heat A and Heat C. Full penetration welds at the joint were 
desired. Welding conditions: Start current – 35 A; Finish current – 26 A; Fixture rotation 
speed - 4.6 revolutions/min, Outer diameter of tubing – 25 mm; Wall thickness – 2.4 mm. 
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2.1.2.3 Buoyancy force 
The Boussinesq approximation is often used to calculate the buoyancy force 

driven flow, i.e., the variation in the density of the liquid metal is ignored, except when it 

gives rise to a buoyancy force, which is also termed as the gravitational force. It can be 

seen in Fig. 2.2(d) that the buoyancy driven convection causes the liquid metal to rise 

along the pool center and to fall along the pool boundary due to the local variation of 

density. This flow pattern is expected because the liquid metal near the heat source is at a 

relatively higher temperature. It moves upwards because of its relatively low density. On 

the other hand, the liquid metal near the pool boundary has relatively low temperature. 

Therefore, it flows downward because of its high density [ 7]. 

The buoyancy force is given by [ 45]: 

( )refb TTgF −βρ=  (2.12) 

where ρ is the density of liquid metal, g is the acceleration due to gravity, β is the thermal 

expansion coefficient, T is the temperature of the liquid metal, and Tref is an arbitrarily 

selected reference temperature. 

 

2.1.2.4 Relative importance of the driving forces 
It is useful to check some dimensionless numbers in order to understand the heat 

transfer, fluid flow and solute transport behavior in the weld pool. These dimensionless 

numbers characterize the relative importance of the driving forces affecting fluid flow. 

Such dimensionless numbers can be used to predict the size and shape of the FZ and 

HAZ. For instance, if the electromagnetic force is the dominant driving force, a deep and 

narrow pool shape is expected. In contrast, if the surface tension gradient force with 

negative ∂γ/∂T is mainly responsible for the liquid motion, the resulting weld pool is 

expected to be wide and shallow. Various dimensionless numbers are discussed as 

follows. 

The ratio of buoyancy to viscous force is determined by Grashof number, Gr 

[ 33, 46]: 
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23
B TLgGr
µ

ρ∆β
=  (2.13) 

where  g is the acceleration due to gravity, β is the thermal expansion coefficient, ∆T is 

the difference between the weld pool peak temperature and the solidus temperature of the 

material, LB is a characteristic length for the buoyancy force in the liquid pool, which is 

approximated by one eighth of the pool width, and µ is the liquid viscosity. 

Magnetic Reynolds number (Rm) defines the ratio of electromagnetic force to 

viscous force, and is expressed as [ 33, 47, 48]: 

22

2
m

4
IRm
µπ

µρ
=  (2.14) 

where ρ is the density, I is the arc current, and µm is the magnetic permeability. 

Surface tension Reynolds number (Ma) is used to describe the ratio of surface 

tension gradient force to viscous force, and is calculated as [ 33, 47, 48]: 

2
R T/TL

Ma
µ

∂γ∂∆ρ
=  (2.15) 

where LR is the characteristic length of the weld pool and is assumed to be equal to a half 

of the weld pool width, and ∂γ/∂T is the temperature coefficient of surface tension. 

Once the values of Gr, Rm and Ma are determined, the relative importance of the 

driving forces, i.e., surface tension gradient, electromagnetic, and buoyancy forces, can 

be judged by the combination of these dimensionless numbers. For example, the ratio of 

the electromagnetic force to the buoyancy force is given by [ 33]: 

Gr
RmR B/M =  (2.16) 

and the ratio of the surface tension gradient force to the buoyancy force is expressed as 

[ 33]: 

Gr
MaR B/S =  (2.17) 

Zhang [ 33] demonstrated the usefulness of the aforementioned approach by 

considering the example of GTA welding of 1005 steel. The data used by him [ 33] for 

calculations are given in Table 2.1. The values of dimensionless numbers calculated by 
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him [ 33] are summarized in Table 2.2. It can be seen from Table 2.2 that the buoyancy 

force is negligible compared to the electromagnetic and surface tension gradient forces. 

On the other hand, the surface tension gradient force plays more important role than the 

electromagnetic force, since RS/B is greater than RM/B. Therefore, a wide and shallow pool 

shape is expected, which was consistent with the experimental observation [ 8]. 

It should be noted that for the particular GTA welding case examined by Zhang 

[ 33], the electromagnetic force is smaller than the surface tension gradient force because 

of the low current (110 A) used. It has been reported that when the current is high (>250 

A), the electromagnetic force becomes the dominant driving force in the weld pool 

convection, which can result in a weld pool with deep penetration [ 49, 50]. 

The above discussion shows that the different driving forces play an important 

role in dissipating the heat and controlling the fluid motion in the weld pool. The driving 

forces also influence the temperature distribution in the weld. Therefore, to accurately 

simulate the weld heat transfer, fluid flow and solute transport, various driving forces 

need to be incorporated in the governing conservation equations and corresponding 

boundary conditions. Details of incorporating the driving forces in the governing 

equations will be presented in later sections. 
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Table 2.1. Welding conditions, material properties and other data of AISI 1005 steel 
welds used by Zhang [ 33] for calculating the values of dimensionless numbers. 

 
Data Value 
Arc current, I (A) 110 
Arc voltage, V (V) 17.5 
Welding speed, Uw (mm/s) 0.6 
Arc energy distribution parameter, rb (mm) 2.7 
Gravitational acceleration, g (m/s2) 9.8 
Coefficient of thermal expansion, β (K-1) 1.7×10-6 
Density of liquid metal, ρ (kg/m3) 7.2×103 
Solidus temperature, Ts (K) 1779 
Effective viscosity of liquid, µ (kg/m-s) 6.3×10-3 
Specific heat of liquid, Cpl (J/kg-K) 754 
Effective thermal conductivity of liquid, kl (J/m-s-K) 36.4 
Magnetic permeability, µm (N/A2) 1.26×10-6 
Temperature coefficient of surface tension ∂γ/∂T, (N/m-K) -0.49×10-3 

Width of the weld pool (mm) 8.8 
Depth of the weld pool (mm) 1.8 
Maximum velocity at the weld pool top surface (mm/s) 120 
Peak temperature of the weld pool (K) 2020 
Temperature variation at the pool surface, ∆T (K) 240 
Thickness of the workpiece, Lw (mm) 10 

 

 

Table 2.2. Dimensionless numbers in the GTA weld pool of 1005 steel [ 33]. The data 
used by Zhang [ 33] in the calculations are given in Table 2.1. 
 
Dimensionless number Description Value 

Gr Ratio of buoyancy to viscous force 30 

Rm Ratio of electromagnetic to viscous force 7.0×104 

Ma Ratio of surface tension to viscous force 9.4×104 

RM/B Ratio of electromagnetic to buoyancy force 2.3×103 

RS/B Ratio of surface tension to buoyancy force 3.1×103 
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2.1.3 Turbulence in weld pool 
The liquid flow can be classified as laminar or turbulent flow based on its 

stability. In a laminar flow, the flow velocity in any location is deterministic, whereas in a 

turbulent flow, the flow velocity fluctuates in a random manner. Laminar flow is often 

observed at low flow velocity and high viscosity. The laminar flow may change to the 

turbulent flow as the flow velocity increases, which can greatly enhance the mixing of 

mass, momentum, energy and solute. The following Reynolds number is used to describe 

the flow behavior [ 46]. 

ν
ρ

= RR LuRe  (2.18) 

where ρ is the liquid density, uR and LR are the characteristic velocity and length of the 

flow, respectively, and ν is the kinematic (molecular) viscosity of the liquid. The critical 

transition Reynolds number from laminar to turbulent flow, for flow through pipes, is 

determined to be about 2100 [ 46]. 

In order to accurately simulate the heat transfer, fluid flow and solute transport in 

the weld pool, it is important to understand the turbulent behavior of the liquid metal. It is 

not yet fully clear whether the flow in the weld pool is turbulent in nature. However, 

several evidences suggest the existence of turbulence in the weld pool. Malinowski-

Brodnicka et al. [ 51] measured the flow velocity in AISI 310 stainless steel weld pools 

and found the Reynolds number to be about 3000. Comparing this value to the critical 

transition Reynolds number of 2100, they [ 51] concluded that the flow in the weld pool 

was most likely turbulent. Several researchers [ 52, 53- 58] have obtained promising results 

by considering turbulence in the numerical heat transfer and fluid flow models for fusion 

welding. A widely used approach to incorporate the effect of turbulence in the numerical 

heat transfer and fluid flow calculations is to use effective viscosity and effective thermal 

conductivity of the molten metal [ 24, 45, 48, 56- 58]. The effective viscosity and effective 

thermal conductivity are often 5 to 20 times higher than their molecular values 

[ 45, 56, 57, 59]. Such high values are necessary to account for the enhanced mixing of 

momentum and energy caused by turbulence. The predicted shape and size of the weld 

pool by adopting appropriate effective viscosity and effective thermal conductivity values 
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have been found to be quite close to experimental results [ 48, 56, 57]. However, in these 

calculations the values of the effective viscosity and thermal conductivity were often 

taken based on experience and not from fundamental principles. The values of effective 

thermal conductivity and effective viscosity are properties of the specific welding system, 

and not the inherent physical properties of the liquid metal [ 48, 56]. Thus, effective 

thermal conductivity and effective viscosity are important uncertain input parameters in 

numerical transport phenomena based models, which significantly affect the results of 

numerical calculations. Reliable values of these uncertain input parameters are needed in 

order to perform accurate numerical calculations. 

 

2.1.4 General governing equations for transport processes 
The following governing conservation equations describe the heat transfer and 

fluid flow in the weld pool [ 17, 45, 48]. An incompressible, laminar and Newtonian liquid 

flow is assumed in the weld pool. Thus, the circulation of liquid metal in the weld pool 

can be represented by the following momentum equation [ 45, 48]: 
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where ρ is the density, t is the time, xi is the distance along the i (i = 1, 2 and 3) direction, 

uj is the velocity component along the j direction, µ is the viscosity, and Sj is the source 

term for the jth momentum equation and is given as [ 45, 48]: 
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where p is the pressure, fL is the liquid fraction, B is a constant introduced to avoid 

division by zero, C (= 1.6×104) is a constant that takes into account solid-liquid mushy 

zone morphology, U is the welding speed and Sbj represents both the electromagnetic and 

buoyancy source terms, which are calculated on the basis of Eqs. (2.4) and (2.12), 

respectively. In Eq. (2.20), the first term on the right hand side is the pressure gradient, 

the second term is the viscosity term, and the third term represents the frictional 



 38

dissipation in the mushy zone according to the Carman-Kozeny equation for flow through 

a porous media. The pressure field can be obtained by solving the following continuity 

equation simultaneously with the momentum equation [ 45, 48]: 

( ) 0
x
u

i

i =
∂
ρ∂  (2.21) 

In order to trace the weld pool liquid/solid interface, i.e., the phase change, the 

total enthalpy H is represented by a sum of sensible heat h and latent heat content ∆H, 

i.e., HhH ∆+= . The sensible heat h is expressed as ∫= dTCh p , where Cp is the 

specific heat, and T is the temperature. The latent heat content ∆H is given as LfH L=∆ , 

where L is the latent heat of fusion. The liquid fraction fL is assumed to vary linearly with 

temperature [ 45, 48]: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<

≤≤
−
−

>

=

S

LS
SL

S

L

L

TT0

TTT
TT
TT

TT1

f  (2.22) 

where TL and TS are the liquidus and solidus temperature, respectively. Thus, the thermal 

energy transportation in the weld workpiece can be expressed by the following energy 

equation [ 45, 48]: 
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where k is the thermal conductivity. The source term Sh is due to the latent heat content 

and is given as [ 45, 48]: 
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When knowledge of solute concentration distribution is desired then the solute 

conservation equation is also required, which is given as [ 46]: 
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where C is the solute concentration, D is the mass diffusivity of the solute and U is the 

welding speed. However, not much attention has been paid in the literature for 

calculating solute distribution in the weld pool. Since these governing equations are very 

complex, they need to be solved numerically.  

Control volume (CV) / finite difference (FD) method [ 17- 19] is commonly used 

for solving the governing conservation equations in computational fluid dynamics 

problems, such as the heat transfer and fluid flow during fusion welding. Detailed 

description of this method is available in the literature [ 17- 19], and is not repeated here.  

In summary, this section examines the current issues and problems in modeling 

transport processes in fusion welds. In particular, the liquid convection and driving 

forces, turbulence and governing conservation equations are discussed. This section 

demonstrates that accurate prediction of temperature and velocity fields, weld bead 

geometry, and thermal cycles in the weld needs to consider convective heat transfer in the 

weld pool. Appropriate modeling of liquid metal convection in the weld pool needs to 

account for the combination of driving forces such as surface tension gradient, 

electromagnetic, and buoyancy forces. Since convection plays such an important role in 

the transport processes during welding, analysis of its effect on solute transport during 

welding is a must, as is done in the present thesis research. 

The topics covered in this section are readily applicable to the GTA welding 

process. However, for the GMA welding process, additional heat and mass is added into 

the weld pool by the heated metal droplets from the consumable electrode. The next 

section discusses solute transport in GMA welds, the resulting solute distribution and its 

role in the occurrence of weld defects like liquation cracking. 

 

2.2 Relation between Solute Distribution and Liquation Cracking in GMA 
Welds 

Liquation cracking, also known as heat-affected zone (HAZ) cracking, is a 

common problem during GMA welding of aluminum alloys [ 5, 60- 68]. It occurs in the 
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HAZ when low melting point region, i.e., partially melted zone (PMZ), is formed during 

welding. The PMZ is the area immediately outside the weld metal, as shown in Fig. 2.6, 

where liquation occurs during welding because of overheating above the solidus 

temperature [ 5, 60]. The evidence of liquation in the PMZ can be seen in Fig. 2.6, which 

shows the PMZ microstructure in alloy 2219, i.e., Al-6.3wt%Cu [ 5]. The liquated and re-

solidified material can be seen along the grain boundaries (GB), which contain a dark-

etching GB-eutectic phase and a light-etching solute depleted phase. Since the grain 

boundaries are liquated, inter-granular cracking can occur under the tensile strains 

induced by welding. Significant tensile strains are induced in the workpiece when it is 

restrained and unable to contract freely upon cooling due to solidification shrinkage [ 60].  
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Fig. 2.6. PMZ microstructure of GMA weld in 2219 aluminum alloy made with 2319 
aluminum filler wire [ 5]. 
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Liquation cracking in aluminum alloy welds has been a subject of great interest in 

the literature [ 5, 60- 74]. Metzger [ 69] observed liquation cracking in full-penetration GTA 

welds of Alloy 6061 made with Al-Mg filler metals at high dilution ratios, but not in 

similar welds made with Al-Si filler metals at any dilution ratios. This was confirmed by 

subsequent studies on 6061 and similar alloys such as 6063 and 6082 [ 70- 74]. Gittos and 

Scott [ 70] used the circular-patch test, described in Ref. [ 75], to study liquation cracking 

in an aluminum alloy close to Alloy 6082 in composition. Liquation cracking occurred in 

full-penetration GTA welds made with the Al-5Mg filler metal at high-dilution ratios 

(about 80%), but not with the Al-5Si filler metal at any dilution ratios. They [ 70] 

proposed that liquation cracking occurs when the base metal equilibrium solidus 

temperature is below the weld metal equilibrium solidus temperature. Katoh and Kerr 

[ 71], Kerr and Katoh [ 72] and Miyazaki et al. [ 73] used the Varestraint test, described in 

Refs. [ 76, 77], to study liquation cracking in GTA and GMA partial penetration welds in 

6000 series aluminum alloys. Their results contradicted the cracking condition of Gittos 

and Scott [ 70]. 

Huang and Kou [ 60] used the circular-patch test to investigate liquation cracking 

in full-penetration GMA welds in 2219 aluminum-copper (Al-Cu) alloy. They [ 60] used 

different composition filler metals in order to vary the weld-metal composition over a 

wide range. They [ 60] found that liquation cracking is severe when the weld-metal solute 

(copper) content is significantly lower than that of the base-metal solute content, and it 

decreases as the weld-metal solute content increases. Using the Scheil equation [ 5] and 

the solute content of the PMZ (equal to the base metal solute content) and the weld metal, 

Huang and Kou [ 60] calculated the curves of temperature (T) versus solid fraction (fS) for 

both the weld metal and the PMZ. The Scheil equation represents the simplest case of 

non-equilibrium solidification, assuming complete liquid diffusion and no solid diffusion 

of the solute, and is given as [ 5]: 
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where mL (< 0) is the slope of the liquidus line in the aluminum-copper phase diagram, 

Tm is the melting point of pure aluminum, C0 is the solute content of the alloy and k is the 
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equilibrium partition ratio, i.e., the ratio of the compositions of solid and liquid at the 

solid/liquid interface. Huang and Kou [ 60] used the T versus fS curves to analyze the 

competition between the solidifying weld metal and the solidifying PMZ. The T vs. fS 

curves showed that liquation cracking took place only when the weld-metal solid fraction 

exceeded the PMZ solid fraction, throughout PMZ solidification. They [ 60] argued that 

lower solid fraction in the PMZ makes this region weaker than the weld metal, making 

the PMZ vulnerable to liquation cracking. 

Since the solid fraction of the solidifying weld metal is decided by the solute 

distribution in the weld pool, accurate prediction of liquation cracking susceptibility in 

aluminum-copper alloy welds requires thorough investigation of non-equilibrium solute 

distribution during GMA welding. The solute distribution in GMA welds is affected by 

weld pool convection, as described in the previous section, as well as by other factors 

including mixing of the filler metal with the base metal, dissolution of the base metal at 

the melting front, non-equilibrium solidification and solute rejection at the solidification 

front. The existing literature on numerical calculations for the GMA welding process 

largely deals with the heat and fluid flow calculations in order to predict the weld bead 

geometry. Not much attention has been paid to modeling solute distribution in the weld. 

Still, some guidance can be obtained from the literature about heat transfer from the filler 

metal and non-equilibrium solidification modeling. 

Fig. 2.7 shows a schematic plot of the GMA welding process. The heat is 

transported from the arc to the workpiece, and superheated liquid metal droplets formed 

from the consumable electrode wire also carry heat and mass into the weld pool [ 2, 78-

 81]. The welding parameters affect droplet diameter, transfer frequency, acceleration and 

impingement velocity. The heat transfer from the metal droplets is described as follows. 
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Fig. 2.7. Schematic plot showing the GMA welding process. The mushy zone represents 
the two phase solid-liquid region. 
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2.2.1 Heat transfer from metal droplets during GMA welding 
Molten droplet transfer is an important characteristic of GMA welding, which 

makes the welding process highly productive [ 33]. The molten metal at the feeding wire 

tip is transferred to the weld pool through three basic modes, i.e., globular, spray, and 

short-circuiting [ 1, 5, 33]. Spray transfer mode is often observed at medium and high 

currents. In this mode, small discrete metal droplets travel across the arc gap at high 

speed and frequency, which enables highly stable metal transfer and less spatter [ 33]. 

Spray transfer mode is often preferred for GMA welding of thick workpiece because of 

its stability and efficiency [ 33]. 

For the spray transfer mode, earlier research work in butt [ 55, 82] and fillet 

welding [33, 79- 81] has shown that the droplet heat transfer can be effectively simulated 

by incorporating a time-averaged volumetric heat source term (Sv) in the energy 

conservation equation. 

 

2.2.1.1 Calculation of volumetric heat source 
As shown in Fig. 2.8, the volumetric heat source is characterized by its radius 

(Rv), height (d) and power density (Sv). The height is calculated by using the following 

equation based on kinetic energy balance [ 1, 33, 82]: 

dvv Dxhd +−=  (2.27) 

where hv is the estimated height of cavity by the impact of metal droplets, xv is the 

distance traveled by the center of the slug between the impingement of two successive 

droplets, and Dd is the droplet diameter. The values of hv and xv in Eq. (2.27) are 

determined as follows [ 1, 33, 82]: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ
γ

+
ρ
γ

−=
g6
vD

gD
2

gD
2h

2
dd

2

dd
v  (2.28) 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ
γ

+= t
h
gcos1

gD
2hx

2/1

vd
Vv  (2.29) 



 46

where γ is the surface tension of the molten metal, g is the gravitational constant, vd is the 

droplet impingement velocity, and ∆t is the interval between two successive drops (∆t = 

1/f, where f is the droplet transfer frequency). The radius of the volumetric heat source 

was assumed to be twice as the droplet radius [ 1, 33, 82]. In a more recent study, Kumar 

and DebRoy [ 83] calculated the optimized value of the radius of the volumetric heat 

source as 2.7 times the droplet radius. 

The total sensible heat input from the metal droplets, Qt, is given as [ 33, 79]: 

df
2
wt HwrQ ρπ=  (2.30) 

where ρ is the density, rw is the radius of the wire, wf is the wire feeding rate, and Hd is 

the total enthalpy of the droplets. Since a portion of Qt is used to heat the additional metal 

from the droplets up to the liquidus temperature, the effective heat (Qd) that the droplets 

carry into the weld pool is given as [ 33, 79, 81]: 

( )ldplf
2
wd TTCwrQ −ρπ=  (2.31) 

where Cpl is the specific heat of the liquid metal, Td is the droplet temperature, which is 

assumed to be 2673 K [ 84], and Tl is the liquidus temperature. The time-averaged power 

density of the volumetric heat source, Sv, is calculated from the computed values of Qd, 

Dd and d as [ 33, 79]: 

dD
Q

S 2
d

d
v π
=  (2.32) 

It is noteworthy that Sv only applies to grid points within the cylindrical heat source, and 

the power density is zero outside the cylinder. In the present study, the solute addition 

from the filler metal will also be considered in a similar manner, by incorporating a time-

averaged volumetric mass source term in the solute conservation equation. 

As shown in Eqs. (2.27) to (2.29), the calculation of the dimensions of the 

volumetric heat source requires the knowledge of the droplet transfer frequency, radius 

and impingement velocity. These parameters are determined from the literature for given 

welding conditions [33, 79]. 
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Fig. 2.8. Schematic plot illustrating the cylindrical volumetric heat source in the weld 
pool along the longitudinal plane [ 33, 85]. 
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2.2.1.2 Calculating droplet transfer frequency and radius 
Rhee and Kannatey-Asibu [ 85] and Jones et al. [ 86] found that the welding 

current strongly affects the droplet frequency. Kim et al. [ 81] calculated the droplet 

transfer frequency by fitting the experimental results of Rhee and Kannatey-Asibu [ 85] 

and Jones et al. [ 86] into a sigmoid function combined with a quadratic function, as 

shown in Fig. 2.9(a). The resulting equation is given as [ 81, 85]: 

)Hz(I0025.0I874.0506.323

06437.6
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44.243f 2×+×−+
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−
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(2.33) 

where I is the welding current in ampere. 

With the knowledge of the droplet transfer frequency and assuming that the 

droplets are spherical, the droplet radius rd is given by [ 81, 85]: 

3
f

2
wd fwr

4
3r =  (2.34) 

where rw is the radius of the fed wire, and wf is the wire feeding rate. 

 

2.2.1.3 Calculating droplet impingement velocity 
The molten droplets detached from electrode wire are accelerated in the arc 

column mainly by plasma drag force and gravity [ 33, 81, 85]. If a constant acceleration is 

assumed, the velocity of droplets impinging the weld pool is given as [ 33, 81, 85]: 

ad
2

0d La2vv +=  (2.35) 

where v0 is the initial droplet velocity, ad is the droplet acceleration and La is the arc 

length. Equation (2.35) indicates that the values of v0, ad and La are needed to calculate 

the droplet impingement velocity. Kim et al. [ 81] estimated the initial velocity of the 

droplets by fitting the experimental results of Lin et al. [ 87] in the following equation 

[ 33, 85]: 

)s/m()D/I(00854.033692.0v d0 +−=  (2.36) 

where I is the arc current in ampere, and Dd is the droplet diameter in meter. 
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Fig. 2.9. Calculated droplet characteristics [ 33, 81, 85]. (a) comparison between the fitted 
and measured droplet transfer frequency, and (b) comparison between calculated and 
measured droplet acceleration in the arc column. In part (a), the triangles represent 
experimental data from Rhee and Kannatey-Asibu [ 85], and in parts (a) and (b), circles 
represent experimental data from Jones et al. [ 86]. 
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In the arc column, the arc plasma travels from the electrode to the workpiece at 

high speeds [ 1]. Hence, the viscous plasma flow pushes the droplet in the arc column. 

The gravity force further accelerates the droplet. By considering the interaction between 

the arc plasma and the droplet, the acceleration, ad, due to the plasma drag and gravity 

forces is given as [ 33, 81, 85, 88]: 
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ρ
ρ
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(2.37) 

where vg and ρg are the velocity and density of argon plasma, respectively, rd is the radius 

of droplet, Cd is the drag coefficient, ρm is the density of droplet and g is the gravitational 

constant. The velocity of argon plasma is calculated using the following equation 

[ 1, 33, 81, 85]: 

)s/m(Ikv 1g ×=  (2.38) 

where k1 is a constant whose value is taken to be 1/4 [ 81, 85]. The other parameters in Eq. 

(2.37) were calculated by Kim et al. [ 81] using the relationship and data available in the 

literature. The acceleration, ad, calculated by Kim et al. [ 81] using Eq. (2.37) was in good 

agreement with the corresponding experimental data as shown in Fig. 2.9(b). 

Kim et al. [ 81] estimated the arc length using the equivalent circuit of GMA 

welding system. In a steady state, the arc length is given by the following circuit equation 

[ 33, 81, 85, 88]: 

aaialaePS0aOC L)IEE(I)RRRR(VV ++++++=  (2.39) 

where VOC is the open-circuit voltage, RS + RP is the electrical resistance of the welding 

power source and cable, Re is the electrical resistance over the electrode extension, Va0, 

Ra, Eal and Eai are coefficients used in Ayrton’s equation [ 88]. Kim et al. [ 81] determined 

these parameters from the data available in the literature. 

Thus, Kim et al. [ 81] calculated the impingement velocity using Eq. (2.35), with 

the estimated droplet initial velocity, acceleration and arc length. Next, they [ 81] used the 

droplet impingement velocity, transfer frequency and radius to calculate the dimensions 

of the cylindrical volumetric heat source, as discussed in the previous section. 
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2.2.1.4 How effective is the volumetric heat source model? 

Yang and DebRoy [ 55] developed a three-dimensional turbulence model to study 

the heat transfer and fluid flow in GMA steel welds. A time-averaged volumetric heat 

source was used to simulate the additional heat from the superheated metal droplets. The 

weld top surface was assumed to be flat. Fig. 2.10 shows the comparison between the 

calculated and the measured FZ geometry. As shown in Fig. 2.10, their [ 55] model could 

reasonably predict the shape and size of the GMA welds, indicating that volumetric heat 

source is a viable approach for incorporating heat transfer by metal droplets during GMA 

welding. Zhang et al. [ 79, 80] and Kim et al. [ 81] also used the volumetric heat source 

model in the simulation of the GMA fillet welding process and obtained good results. 

Therefore, this approach has been adopted in the present thesis research. 

 

2.2.2 Non-equilibrium solidification 
Rapid, non-equilibrium solidification is an important characteristic of fusion 

welding process [ 5]. The thermodynamics and kinetics of non-equilibrium solidification 

significantly affect the solute partitioning during weld solidification. Partitioning of the 

solute is an important contributor to the solute distribution in the weld. Many previous 

attempts to understand weld pool solidification considered thermal field alone [ 48, 56] 

and ignored the convective solute transport in the weld pool. Chakraborty and Dutta [  89] 

developed a solidification model for studying heat and mass transfer in a single-pass laser 

surface alloying process. However, they [  89] assumed equilibrium at the solid-liquid 

interface that may not be attained when the interface speed is comparable with or faster 

than the diffusion speed. The well known Scheil equation for solute segregation, given by 

Eq. (2.26), represents a simple case of non-equilibrium solidification, assuming complete 

liquid diffusion and no solid diffusion of the solute [ 5]. It is derived assuming local 

equilibrium at the solid-liquid interface and a constant value of the solute partition 

coefficient, which are not valid during rapid solidification [ 90]. Both the velocity of 

solidification front and the undercooling must be considered to accurately represent 

solidification during welding. 
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Fig. 2.10. Comparison of the calculated and experimental geometry of the fusion zone 
(FZ) and the heat-affected zone (HAZ) of GMA weld in HSLA-100 steel. Welding 
conditions: GMA, 405 A, 31.3 V, 5.29 mm/s [ 55]. 
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Galenko and Sobolev [ 90] presented a local non-equilibrium approach to 

understand the solidification of undercooled alloys. They [ 90] took into account the 

relaxation to local equilibrium of the solute flux in both the solid and liquid phases, and 

incorporated the diffusive speed as an important parameter governing the solute 

concentration field. Subsequently, they [ 90] derived a generalized expression for the non-

equilibrium solute partition coefficient, kP, as:  
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where *
Pk  is the equilibrium partition coefficient, V is the solid-liquid interface velocity 

and L
DV  is the diffusive speed in the liquid, which can be calculated as [ 90]: 

5.0L
D

*
l

L
D )/D(V τ=  (2.41) 

where L
Dτ  refers to the time of diffusional relaxation of collective atoms (molecules, 

particles) to their equilibrium state in a local volume of alloy and *
lD  is the diffusion 

coefficient in the liquid under the conditions of interfacial equilibrium. Galenko and 

Sobolev [ 90] used Eq. (2.40) to calculate the non-equilibrium partition coefficient as a 

function of the interface velocity for the solidification of Si-As dilute alloy, as shown in 

Fig. 2.11. In this figure, they [ 90] compared results of their model, which takes into 

account both the finite speed of solute diffusion in the bulk liquid and the deviation from 

equilibrium at the solidification front, with independent experimental results [ 91] and the 

results from another model which only takes into account the deviation from equilibrium 

at the solidification front. The reasonable agreement between the results for their model 

and the experimental results ensured the validity of Eq. (2.40). In the present thesis 

research, Eq. (2.40) will be used to calculate the non-equilibrium solute partitioning 

during weld solidification. 

 

 



 54

 
 

 

Fig. 2.11. Comparison of interface velocity versus solute partition coefficient plots 
obtained using Eq. (2.40) (curve 1) and a dilute continuous growth model (curve 2) with 
the experimental data (circles and triangles) for solidification of Si-As dilute alloy. The 
value of kP = 0.35 and that of L

DV  = 1.2 m/s [ 90]. 
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In summary, although significant progress has been made in modeling of heat 

transfer during GMA welding, not much effort has been devoted to understanding the 

solute distribution in the weld. The available models for non-equilibrium solute 

partitioning need to be incorporated in a numerical model for GMA welding to accurately 

model solute distribution in the weld. Furthermore, the complex coupling of momentum, 

heat and solute transport under non-equilibrium conditions during GMA welding are yet 

to be investigated. All these issues will be incorporated in the present thesis research for 

the accurate calculation of the evolution of solute distribution in GMA welds. 

The next two sections highlight some of the major limitations of the presently 

available numerical transport phenomena based models, and their possible remedies. 

 

2.3 Enhancing the Reliability of Output and Improving Usefulness of the 
Numerical Transport Phenomena Based Models 

Currently the numerical transport phenomena based models for fusion welding are 

used mostly as a research tool rather than as a tool for designing and manufacturing in 

industry. There are several reasons for the restricted use of these advanced tools.  First, 

the weld attributes predicted by the numerical transport phenomena based models such as 

weld geometry and cooling rate do not always agree with the experimental results. 

Second, the fusion welding system is highly complex and involves the non-linear 

interaction of several welding variables. As a result, a particular weld attribute, such as 

the weld geometry, can be obtained through the use of various sets of welding variables. 

The current generation of numerical transport phenomena based models cannot determine 

alternative pathways to achieve a target weld attribute. 

A primary reason for the disagreement between the computed and experimentally 

determined weld attribute such as weld geometry is the uncertainty of the values of some 

of the input parameters because they cannot be prescribed based on either scientific 

principles or welding conditions. The models for the gas tungsten arc (GTA) welding 

process have five uncertain input parameters, i.e., arc efficiency, arc radius, power 

distribution factor, and the effective thermal conductivity and viscosity of the liquid 

metal [ 83, 92]. Although the values of arc efficiency have been experimentally measured 
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for many welding conditions, the reported values vary significantly, even for apparently 

similar welding conditions. Measured values of the arc radius and power distribution 

factor depend on welding conditions and, as a result, their values cannot be accurately 

specified except for certain narrow windows of welding conditions. Values of the 

effective thermal conductivity and viscosity are important, since they allow accurate 

modeling of the high rates of transport of heat and mass in systems with strong 

fluctuating velocities, such as small weld pools with very strong convection currents. The 

values of effective conductivity and viscosity are properties of the specific welding 

system, and not the inherent physical properties of the liquid metal [ 48, 83, 92] and the 

values of these  parameters significantly affect the results of numerical transport 

phenomena based calculations. A systematic global search for the uncertain input 

parameters is needed so that the computed weld attributes such as weld geometry always 

agree with the corresponding experimentally determined values. 

The desired depth and width of the weld pool and the cooling rate are often 

specified to achieve a structurally sound and reliable welded joint. Therefore, an 

important requirement is to determine the values of the welding variables necessary for 

achieving a given weld attribute, such as the weld geometry.  In practice a particular weld 

attribute may be obtained through multiple combinations of welding variables. The 

forward numerical transport phenomena based model needs to be systematically 

interrogated to estimate the optimized values of welding variable sets that can produce a 

specified weld geometry.  

De and DebRoy [ 92] and Kumar and DebRoy [ 83] recently developed inverse 

models to calculate various unknown input parameters such as the arc efficiency, 

effective thermal conductivity and effective viscosity for numerical transport phenomena 

based modeling of the welding processes using derivative based optimization techniques. 

A drawback of derivative based optimization techniques is their occasional convergence 

to a local solution [ 93]. Furthermore, appropriate initial guess of the uncertain input 

variables is needed to achieve the global optimal solution [ 93]. Genetic algorithm (GA) is 

a stochastic, population based optimization technique that can find the global optimal 

solution independent of the initial guessed values [ 94- 96]. 
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Genetic algorithms work with a set of "individuals" - a population, where each 

individual is a solution of a given problem [ 93]. The initial population defines the 

possible solutions of the optimization problem, i.e., sets of variables that need to be 

optimized. There are two popular ways of representing the variables in the population in 

GA: binary and real numbers. Generally binary representation of variables converges 

slowly compared to the real representations [ 94, 95]. In addition, since the binary genetic 

algorithm has its precision limited by the binary representation of variables, using real 

numbers allows representation to the machine precision in continuous search space 

[ 94, 95]. The real coded genetic algorithm also has the advantage of requiring less storage 

than the binary GA because a single floating point number represents a variable instead 

of many integers having values 0 and 1 [ 94, 95]. 

A number of real parameter genetic algorithms have been developed recently with 

an aim to solve real-world optimization problems. Deb et al. [ 94] developed an efficient 

real coded GA, called the generalized generation gap (G3) model using parent centric 

recombination (PCX) operator. The generic G3 model using the PCX operator is an elite-

preserving, scalable, and computationally fast population-alteration model [ 94]. Deb et al. 

[ 94] showed that this model converged at a much faster rate on standard test functions as 

compared to other real-parameter GAs as well as classical optimization algorithms. Also, 

this model required the least number of calculations of the test function in finding the 

global optimal solution [ 94]. Keeping the number of function evaluations to a minimum 

is very important in an optimization problem involving repeated runs of numerical 

transport phenomena based models, because these models are complex and consume a 

large amount of computer time. 

Kumar et al. [ 96] used the PCX based G3 GA and a limited volume of 

experimental data to find the optimized values of three unknown parameters in the non-

isothermal Johnson-Mehl-Avarami (JMA) equation, i.e., activation energy, pre-

exponential factor and exponent in the non-isothermal JMA equation. The non-isothermal 

JMA equation is often used to represent phase transformation behavior in many systems 

involving nucleation and growth such as the α-ferrite to γ-austenite transformation in C-

Mn steels during heating [ 96]. They [ 96] reported that the GA based determination of the 
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three JMA equation parameters resulted in better agreement between the calculated and 

the experimentally determined austenite phase fractions than was previously achieved. 

Thus, PCX based G3 GA holds significant promise in finding the optimized values of the 

uncertain input parameters of the numerical transport phenomena based models. 

The problem of finding multiple combinations of welding variables to achieve a 

target weld attribute like weld geometry cannot be approached using classical gradient-

based search and optimization methods, because they produce a single optimum solution. 

These methods use a point-by-point approach, where one relatively imperfect solution in 

each iteration is modified to a different more appropriate solution [ 93, 95]. Therefore, a 

combination of a classical optimization method with a phenomenological model can 

provide only a single local optimum solution in situations where multiple solutions exist. 

In contrast, genetic algorithms can obtain a population of optimal solutions [ 93- 95]. 

Therefore, GA can be combined with a numerical transport phenomena based model to 

find multiple combinations of welding variables to obtain a target weld geometry. 

However, such a method would require multiple runs of the numerical model and would 

be highly time consuming. Unless a model can do calculations in a reasonable time 

frame, it is unlikely to find widespread practical applications. A practical solution to this 

problem is to develop a neural network that is capable of providing high computational 

speed. The following section discusses the current state of understanding about the 

development of a neural network for the fusion welding process. 

 

2.4 Development of a Neural Network Model for Fusion Welding 
Neural network models are powerful non-linear regression analysis methods [ 97-

 101] that can relate input variables like welding process parameters and material 

properties with weld characteristics such as weld pool geometry. Fig. 2.12 shows typical 

neural network architecture. Input nodes, at the bottom of the figure, receive problem 

attributes for a particular input/output pair, and transmit that information to adjacent 

nodes through the connections between them [ 100]. Output nodes, at the top of the figure, 

display the neural network's response to the particular input pattern [ 100]. Connections 

between nodes have associated weights, such as w1, w2 shown in Fig. 2.12. Hidden nodes 
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perform non-linear transformations that are central to the modeling capability of the 

network. For a fusion welding experiment, an input/output pair can consist of the input 

process parameters as arc current, voltage, welding speed and wire speed, and the 

corresponding output weld attributes as weld pool depth and width, as shown in Fig. 2.12. 

The approach would then be to collect many such measurements, and repeatedly present 

the input vectors to the network [ 100]. The network, whose weights are (usually) initially 

random values, will give meaningless outputs at first. Here comes the concept of training 

the algorithm, which essentially implies finding a set of weights that minimize the error 

between the desired output and the output calculated by the neural network. A 

backpropagation algorithm [ 97, 99, 100, 102] is commonly used for training the neural 

network. The backpropagation algorithm adjusts the weights of the network as the 

training progresses, by calculating an error between the desired output and the output 

calculated by the network [ 100]. The error, E, is given as [ 100]: 

( )
2n

1j
jj atE ∑

=

−=  (2.42) 

where n is the number of input/output pairs used for training, tj is the target output for the 

input/output pair j and aj is the corresponding output calculated by the neural network. 

Then the sum squared error over the entire training set is the error term which drives the 

weight change as follows [ 100]: 

i
i w

Ew
δ
δ

=∆  (2.43) 

where wi is the weight on the connection i. This approach is essentially a gradient descent 

search method for minimizing a non-linear function. Once the error is minimized to the 

required level, the trained neural network is tested on new input/output pairs.  
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Fig. 2.12. Typical back-propagation neural network structure. The symbols I1 to I4 
represent the four input process parameters of a fusion welding process, while O1 and O2 
represent the corresponding output weld attributes. 



 61

As mentioned above, the most common backpropagation algorithm uses a 

gradient descent search method. During the training of the neural network, the gradient 

descent search method decreases the error very rapidly. However, the final result depends 

on the initial random weights, which is a common problem with the gradient descent 

based optimization techniques [ 100, 103, 104]. Furthermore, for simple two-layer 

networks (without a hidden layer), the error surface is bowl shaped and using gradient-

descent techniques to minimize the error is not a problem. However, the addition of a 

hidden layer, used to solve more difficult problems like fusion welding process, increases 

the possibility for complex error surfaces which contain many minima. The gradient 

based methods can easily get trapped in such local minima. Stochastic optimization 

techniques like genetic algorithm are capable of finding the global minima and avoiding 

local minima [ 94- 96]. Therefore, a hybrid training approach can be a good option for 

training a neural network, where the initial guidance is provided by the gradient descent 

method and the global minima is found by a genetic algorithm. 

In recent decades, many researchers have attempted systematic correlations 

between welding variables and weld characteristics using neural networks [ 97, 98, 105-

 123]. The previous efforts to model the GTA welding process using neural network were 

based on training the network with experimental data [ 102, 105, 106]. Since the volume of 

experimental data required to train a neural network depends on the number of input and 

output variables, most previous efforts considered only few input parameters to keep the 

necessary volume of experimental data tractable [ 102, 105, 106]. For example, Tarng et al. 

[  105], Andersen et al. [ 102] and Juang et al. [ 106] developed neural network models of 

GTA welding process, which considered the effects of input process parameters like 

welding speed, arc current and voltage on the weld pool geometry. These neural network 

models were developed using a limited volume of experimental data, and they could not 

determine the effect of important material properties like thermal conductivity, specific 

heat, etc. on weld pool geometry. Furthermore, the existing neural network models  

[ 102, 105, 106] do not provide any information about some of the other important output 

parameters such as the cooling rate and peak temperature. A neural network can only be 

used as a substitute for numerical transport phenomena based models if it can incorporate 
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the effects of the important input welding process parameters and material properties on 

the weld pool geometry, cooling rate and peak temperature. Such a neural network can be 

produced by training it with the results of a well tested numerical transport phenomena 

based model providing reliable output. 

 

2.5 Important Unanswered Questions 
The current generation of numerical transport phenomena based models suffers 

from two major limitations, i.e., lack of reliability of the output and absence of 

bidirectional capability. These problems seriously limit the usefulness of these models. 

New methodologies need to be developed by coupling numerical transport phenomena 

based models, stochastic optimization algorithms and neural networks in order to address 

these limitations. Once the reliability and utility issues are addressed, the next step is to 

enhance the model capabilities. Mass transport during fusion welding and the resulting 

solute distribution in the weld have a significant impact on the weld pool geometry and 

consumable design to avoid occurrence of weld defects like liquation cracking. The 

transport phenomena based models can be applied to calculate the solute transport in the 

weld and study its effect on weld properties. The aforementioned approach involves 

development of several new methodologies leading to a number of unanswered questions. 

Following is a selection of important unanswered questions that are addressed in the 

present thesis study. 

 

The output of the currently available numerical transport phenomena based 

models is often not reliable mainly because of some uncertain input parameters. 

Furthermore, the numerical transport phenomena based models cannot go backwards, i.e., 

they cannot provide the welding process parameters such as current, voltage and welding 

speed, to obtain a target weld attribute such as weld pool geometry. In practice a 

particular weld attribute may be obtained through multiple combinations of welding 

variables. In the present thesis study, a new methodology will be developed where the 

numerical transport phenomena based model will be coupled with a genetic algorithm 

based optimization routine and a limited volume of experimental data to optimize the 
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values of the uncertain input parameter. Do these optimized values of the uncertain input 

parameters provide reliable output? This question will be answered by comparing the 

computed weld pool shape and size with the corresponding experimental results.  

The same methodology as above can in principle be applied to find multiple 

combinations of welding process parameters to obtain a target weld attribute like weld 

pool geometry. However, this method is computationally very expensive because it 

requires multiple runs of the numerical model, which is complex, requires specialized 

training to develop and test, and consumes a large amount of computer time to run. How 

can this procedure be made computationally economical? A practical solution to this 

problem is to develop a neural network, which can relate input variables like welding 

process parameters and material properties with weld characteristics such as weld pool 

geometry, and at the same time provide high computational speed. The outstanding issues 

associated with the development of a neural network for the fusion welding process are as 

follows: (1) How does a hybrid training approach compare with the conventional gradient 

descent training approach? (2) Is the neural network well trained? (3) Do the results of 

the neural network comply with the phenomenological laws of welding physics? These 

questions will be answered in the present thesis research by developing a neural network 

trained with the results of the numerical transport phenomena based model. A hybrid 

training approach will be used, which includes the gradient descent method and a genetic 

algorithm. The performance of the neural network will be tested on independent set of 

results generated by the numerical transport phenomena base model. Once the neural 

network is used in the above methodology, computational efficiency is achieved and 

multiple sets of welding process parameters are obtained, the question that arises is, “Do 

the multiple combinations of welding process parameters lead to the same weld pool 

geometry”? This question will be answered by comparing the weld pool geometry 

calculated using each set of welding process parameters with the target experimental 

weld pool geometry.  

Solute transport and distribution during fusion welding has a profound effect on 

the weld characteristics such as weld pool geometry and creation of weld defects like 

liquation cracking. It is important to understand the following questions: (1) How does 
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weld pool convection affect solute transport? (2) How does the distribution of surface 

active element sulfur affect weld pool geometry? (3) What other factors affect the weld 

pool geometry in GTA welds when welding two plates with different sulfur contents? (4) 

What factors affect solute transport during GMA welding? (5) How is the heat and solute 

transport from filler metal during GMA welding incorporated? (6) During GMA welding, 

what is the mushy zone solute content for different filler metal compositions? In order to 

address these questions solute transport equations will be introduced into an already 

existing numerical heat transfer and fluid flow model to study the distribution of solute in 

the weld pool. The usefulness and reliability of output of this model will be enhanced by 

the computational procedures described above. This transport phenomena based model 

will be used to understand the evolution of weld pool geometry during GTA welding of 

stainless steel plates having same and different sulfur contents. Next, the numerical 

model will be adapted to the GMA welding process by using time-averaged volumetric 

heat and mass source to incorporate the heat and solute intake from the filler metal, and a 

non-equilibrium solidification model. The numerical model will then used for the design 

of consumables to avoid liquation cracking during GMA welding of Al-6.3wt%Cu alloy 

using filler metals with different copper contents.  
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Chapter 3 
 

Momentum, Energy and Solute Transport Model for Gas Tungsten Arc 
Welding – Enhancing Reliability of Its Output 

 

In recent decades, heat transfer and fluid flow models have provided significant 

insights into the welding process. However, these models have not been applied to 

calculate solute transport during welding. Solute transport has a significant impact on the 

weld properties such as the evolution of weld pool geometry and occurrence of weld 

defects like liquation cracking. In the present study, solute transport during welding has 

been calculated by incorporating solute conservation equation and appropriate boundary 

conditions in an already existing numerical heat transfer and fluid flow model for fusion 

welding. The resulting solute distribution has been compared with corresponding 

experimental results.  

One of the major problems with the existing numerical transport phenomena 

based models [ 1- 18] is that the temperature fields (and therefore, fusion zone geometry) 

and thermal cycles predicted by these models are not always reliable, i.e., they do not 

always agree with the experimental results. The disagreement between the computed and 

experimentally determined temperature fields can be primarily attributed to the 

uncertainty in the values of some of the input parameters, which cannot be prescribed 

based on either scientific principles or welding conditions. In general there are five 

uncertain input parameters, i.e., arc efficiency, arc radius, power distribution factor, and 

effective thermal conductivity and viscosity of the liquid metal. Although the values of 

arc efficiency have been experimentally measured for many welding conditions, the 

reported values vary significantly, even for apparently similar welding conditions. 

Measured values of the arc radius and power distribution factor depend on welding 

conditions and, as a result, their values cannot be accurately specified except for certain 

narrow windows of welding conditions. Values of the effective thermal conductivity and 

viscosity are important, since they allow accurate modeling of the high rates of transport 

of heat and mass in systems with strong fluctuating velocities, such as small weld pools 

with very strong convection currents. The values of effective conductivity and viscosity 
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are properties of the specific welding system, and not the inherent physical properties of 

the liquid metal [ 13] and the values of these  parameters significantly affect the results of 

numerical transport phenomena based calculations. 

In the present chapter we show that the computational transport phenomena based 

model of GTA welding can overcome the aforementioned difficulties by combining with 

a genetic algorithm (GA). The reliability of the output of the numerical transport 

phenomena based model can be significantly improved by optimizing the values of the 

uncertain input parameters from a limited volume of the experimental data. A systematic 

global search for the values of the uncertain input parameters is conducted using GA, 

which is a powerful optimization technique that can search for global optimal solution 

independent of the initial guessed values [ 19- 22]. This computational procedure is 

applied to the GTA welding of stainless steel. A comparison of the calculated and 

experimental geometry is undertaken to examine the reliability of the computational 

procedure. 

 
3.1 Mathematical Formulation 
 
3.1.1 Numerical transport phenomena based model 

The gas tungsten arc (GTA) welding process involves a heat source that moves 

along the negative x-direction with a constant speed, U. The welding arc heats the work-

piece surface and contributes to the formation of a molten pool. The following major 

assumptions are made in the model:  

(i) The molten metal is considered to be Newtonian and incompressible. 

(ii) The density variation in the calculation domain is ignored except for the calculation 

of the buoyancy force following Boussinesq’s approximation.  

 
3.1.1.1 Governing equations 

In a stationary co-ordinate system, the generalized governing equation for the 

transport of various quantities in the molten pool and its surroundings ( )z,y,x′  can be 

written as: 
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( ) ( ) ( ) φ+φ∇Γ∇=φρ∇+φρ
∂
∂ S.u.
t

r  (3.1) 

where t is time, ρ is the density, φ is any dependent scalar variable per unit mass, ur  is the 

resultant velocity vector, Γ is a generalised diffusion coefficient, and Sφ is a source term. 

The transport phenomena inside the molten pool can be conveniently studied with respect 

to a co-ordinate system that moves along the x-direction with the moving heat source by 

considering the following coordinate transformation: 

t)U(xx −−′=  (3.2) 

where U  is the welding speed along the negative x-direction, and x, y, z are co-ordinates 

in a frame moving with the welding torch. In the following discussion, the following 

notation will be followed for description of the conservation equations: 

zx,yx,xx 321 ===  (3.3) 

Applying the above transformation and substituting φ by the appropriate 

variables, the governing equations in the moving co-ordinate system assume the 

following forms. 

The equivalent single-phase linear momentum conservation equation for the x-

direction, with i = 1, 2 and 3 in index notation is given by: 
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where g is the gravitational acceleration, Tr is a reference temperature taken as the solidus 

temperature of the alloy, Tm, and Cr  is the concentration of the solute at Tr. The terms βT 

and βc represent the thermal and solutal volumetric expansion coefficients, respectively. 

The source term Sx considers frictional resistance to flow experienced by the liquid metal 

in the two-phase solid-liquid region similar to flow in a porous medium. This resistance 

is calculated using Darcy's model and the Carman-Kozeny relationship [ 12, 17, 23]. The 

source term also includes the Lorentz force as a consequence of the electric current used 

in the welding. Combining these two effects, the source term can be represented as: 
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where fl is the liquid fraction given as: L/Hfl ∆= , where ∆H is the latent heat content of 

a control volume and L is the latent heat of fusion, J is the current density and B is the 

magnetic field intensity. In Eq. (3.5), Km is a large number [ 12] and b is a small number 

to avoid division by zero. The above formulation ensures that the velocity becomes zero 

in the solid region and increases continuously into the liquid region. The details of the 

formulation of the above term have been reported by Brent et al. [ 23]. The calculation of 

the Lorentz force term is presented in the literature [ 10], and is not repeated here. 

 The pressure field was obtained by solving the following continuity equation 

simultaneously with the momentum equation  [ 12, 17]: 

0
x
u

i

i =
∂
∂  (3.6) 

 The total enthalpy, H, is represented by a sum of sensible heat, h, and latent heat 

content, ∆H, i.e., HhH ∆+= , where ∫= dTCh p , Cp is the specific heat, T is the 

temperature, LfH L=∆ , L is the latent heat of fusion, and the liquid fraction, fL, is 

assumed to vary linearly with temperature in the mushy zone [ 12, 17]: 
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where TL and TS are the liquidus and the solidus temperature, respectively. The thermal 

energy transport in the weld workpiece can be expressed by the following modified 

energy equation [ 12, 17]: 
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where k is the effective thermal conductivity. In the liquid region, the value of the 

thermal conductivity in Eq. (3.8) is taken as the effective thermal conductivity, which is a 
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property of the specific welding system and not an inherent property of the liquid metal. 

Typical values of effective thermal conductivity are much higher than that of the thermal 

conductivity of the liquid. The higher value is important because it allows accurate 

modeling of the high rates of transport of heat in systems with strong fluctuating 

velocities that are inevitable in small weld pools with very strong convection currents 

[ 23].  

 The species conservation equation is given by: 
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where C is the solute concentration and D is the effective mass diffusivity of the solute. 

The incorporation of solute conservation equation in the numerical model developed in 

the present study facilitates the calculation of solute distribution in the weld and its 

influence on weld properties.  

 
3.1.1.2 Boundary conditions  
 The weld top surface is assumed to be flat. The velocity boundary condition is 

given by [ 12, 17]: 
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(3.10) 

where u, v and w are the velocity components along the x, y and z directions, 

respectively, dγ/dC is the concentration coefficient of surface tension and dγ/dT is the 

temperature coefficient of surface tension. The ∂γ/∂C term has been incorporated in Eq. 

(3.10) in the present study because the distribution of solute in the weld pool is not 

necessarily uniform and therefore ∂C/∂x and ∂C/∂y have finite values. As shown in Eq. 

(3.10), the u and v velocities at the surface are determined from the Marangoni effect 

[ 12]. The w velocity is zero since there is no flow of liquid metal perpendicular to the 

pool top surface. The heat flux at the top surface is given by [ 12, 17]: 
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where rb is the arc radius of a circular region within which the arc power is focused, d is 

the dimensionless arc power distribution factor, which determines the nature of 

distribution of the power density of the arc, Q is the total arc power, η is the arc 

efficiency, σ is the Stefan–Boltzmann constant, hc is the heat transfer coefficient, and Ta 

is the ambient temperature. The first term on the right hand side of Eq. (3.11) is the heat 

input from the heat source, defined by a Gaussian heat distribution. The arc power 

distribution factor, d, determines the nature of the Gaussian heat distribution pattern. The 

distribution is rather diffused for low values of d such as 0.5 and more focused for higher 

values of d such as 3.0. The second and third terms represent the heat loss by radiation 

and convection, respectively. At all other surfaces, temperatures are taken as ambient 

temperature and the velocities are set to zero. 

 

3.1.2 Genetic algorithm as an optimization model 
A real number based genetic algorithm (GA) is used to enhance the reliability of 

the output of the numerical transport phenomena based model by estimating an optimum 

set of uncertain input parameters for the model, i.e., arc efficiency (η), arc radius (rb), arc 

power distribution factor (d), effective thermal conductivity (keff) and effective viscosity 

(µeff). To start with, many initial sets of randomly chosen values of these unknown input 

parameters are created. A systematic global search is next undertaken to find the most 

optimum set of values of these unknown input parameters that lead to the least error 

between the calculated and the experimental weld pool dimensions, i.e., weld pool 

penetration and width. The experimental data consists of sets of five welding conditions 

and the corresponding measured weld pool dimensions for the GTA welding of stainless 

steels, as given in Table 3.1. The calculated weld pool penetration and width for each set 

of input welding variables are obtained from the numerical transport phenomena based 

model. The randomly chosen values of unknown input parameters do not always produce 

the desired weld dimensions. The resulting mismatch between the computed and the 

desired weld dimensions is expressed by the following objective function, O1(f):  
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where m is the index that identifies the specific set of welding conditions given in Table 

3.1, c
mp  and c

mw  are the computed weld pool penetration and width, respectively, and, 
e
mp  and e

mw  are the corresponding experimental or desired values of these two weld 

attributes for the set of welding conditions with index m.  

 

Table 3.1. Welding variables and experimentally measured weld pool penetration and 
width. The experimental data was provided by Dr. T. J. Lienert and Dr. M. Johnson of 
Los Alamos National Laboratory.  

 

Data 
set 

Current 
(A) 

Voltage 
(V) 

Welding 
speed 

(mm/s) 

 
Sulfur 
(wt%) 

Weld pool 
penetration 

(mm) 

Weld pool 
width 
(mm) 

1 101 9.6 1.7 0.003 1.37 4.83 

2 150 9.9 1.7 0.003 2.18 6.80 

3 150 10.5 1.7 0.293 3.12 5.91 

4 100 10.0 3.4 0.024 1.22 4.15 

5 101 9.9 3.4 0.293 1.39 4.05 
 

 

The objective function, O1(f), depends on the five unknown input parameters: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ
µ

η==
fl

eff

s

eff

r

b
54321 ,

k
k

,d,
e
r

,1Of,f,f,f,f1O)f(1O   (3.13) 

In Eq. (3.13), er is the radius of the electrode, ks is the thermal conductivity of the solid 

metal at room temperature, µfl is the viscosity of molten steel, keff is the effective thermal 

conductivity of liquid metal, and µeff is the effective viscosity of liquid metal. These are 

reference values that represent the order of magnitude of the unknown input parameters. 

These reference values and other data needed for the calculations are given in Table 3.2. 

Note that Eq. (3.13) has been made non-dimensional in order to preserve the importance 
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of all five unknown input parameters, making their non-dimensional values comparable 

in magnitude. The GA produces new individuals, or sets of unknown input parameters, 

with iterations based on the evolutionary principles [ 21, 22]. Error! Reference source 

not found. provides explanations of various terms used in GA as related to welding. The 

GA used in the present study is a parent centric recombination (PCX) operator based 

generalized generation gap (G3) model [ 21, 22]. This model was chosen because it has 

been shown to have a faster convergence rate on standard test functions as compared to 

other evolutionary algorithms [ 21, 22]. The specific application of this model for 

obtaining the optimum set of values of the five unknown input parameters of the 

numerical transport phenomena based model for GTA welding is described as follows. 

A population is a collection of many individuals and each individual represents a 

set of randomly chosen values of the five non-dimensionalized unknown input 

parameters. A parent refers to an individual in the current population. The best parent is 

the individual that has the best fitness, i.e., gives the minimum value of the objective 

function, defined by Eq. (3.12), in the entire population. 

 

Table 3.2. Data used in the calculations [ 5].  
 

Physical property Value 

Liquidus Temperature, Tl (K) 1785.0 

Solidus temperature, Ts (K) 1745.0 

Density of metal, ρ (kg/m3) 7200.0 

Thermal conductivity of solid, ks (J/m-s-K) 25.08 

Specific heat of solid, Cps (J/kg-K) 702.24 

Specific heat of liquid, Cpl, (J/kg-K) 806.74 

Temperature coefficient of surface tension, dγ/dT (N/m-K) -0.47×10-3 

Coefficient of thermal expansion, β (K-1) 1.5×10-6 

Viscosity of molten iron, µfl (kg/m-s) 6.7×10-3 

Radius of the electrode, er (mm) 1.0 
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The algorithm for the model is as follows:  

1. The best parent and two other randomly selected parents are chosen from the 

population. 

2. From the three chosen parents, two offsprings or new individuals are generated using a 

recombination scheme. PCX based G3 models are known to converge rapidly when three 

parents and two offsprings are selected [ 22]. A recombination scheme is a process for 

creating new individuals from the parents. 

3. Two new parents are randomly chosen from the current population. 

4. A subpopulation of four individuals that includes the two randomly chosen parents in 

step 3 and two new offsprings generated in step 2 is formed. 

5. The two best solutions, i.e., the solutions having the least values of the objective 

function, are chosen from the subpopulation of four members created in step 4. These two 

individuals replace the two parents randomly chosen in step 3.  

6. The calculations are repeated from step 1 again until convergence is achieved.   

The above steps, as applied to the present study, are shown in Fig. 3.1. The working of 

the model to find the unknown input variables by minimizing the objective function is 

illustrated in Fig. 3.2. The recombination scheme (step 2) used in the present model is 

based on the PCX operator. A brief description of the PCX operator, as applied to the 

present problem of five unknown input parameters, is presented below. 

 First three parents, i.e., ( )0
5

0
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0
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randomly selected from the current population. Here, the subscripts represent the five 

unknown input parameters, while the superscripts denote the parent identification 
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1v , i.e., 

the mean vector, or centroid, of the three chosen parents is computed. To create an 

offspring, one of the parents, say ( ) ( )0
5

0
4

0
3

0
2

0
1

p f,f,f,f,fx =v  is chosen randomly. The 

direction vector, ( ) ( ) gxd pp vvv
−= , is next calculated from the selected parent to the mean 

vector or centroid. Thereafter, from each of the other two parents, i.e., ( )1
5

1
4

1
3

1
2

1
1 f,f,f,f,f  
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and ( )2
5

2
4

2
3

2
2

2
1 f,f,f,f,f , perpendicular distances, Di, to the direction vector, (p)d

r
, are 

computed and their average, D , is found. 

 

Table 3.3: Terminology used in genetic algorithm.  
 

Biological terms Equivalent welding variables and 
representation in genetic algorithm 

Genes: Units containing hereditary information 

In the form of non-dimensional 
variables, f1, f2, f3, f4 and f5. Eg. f1 = 
1.10; f2 = 1.70; f3= 1.56; f4 = 1.85; 
f5= 1.21. 

Chromosome/Individual:  
A number of genes folded together 
 

A set of input variable values taken 
together, i.e., 
(1.10, 1.70, 1.56, 1.85, 1.21) 

Population: Collection of many chromosomes/ 
individuals 
 

Collection of multiple sets: 
 (1.10, 1.70, 1.56, 1.85, 1.21), 
 (1.20, 1.54, 1.65, 1.91, 1.17),  
… … … … 
(1.23, 1.65, 1.75, 1.68, 1.35) 

Parents: Chromosomes/individuals participating 
for creating new individuals (or offsprings) 

Parents: Eg. 
 (1.10, 1.70, 1.56, 1.85, 1.21), 
 (1.23, 1.65, 1.75, 1.68, 1.35) 

Objective function value: Value of objective 
function determines if a chromosome/ 
individual  survives or dies  

Objective function: Calculated for 
each set of input variables using 
Eq. (3.12) 
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Fig. 3.1. Generalized generation gap (G3) genetic algorithm using parent centric 
recombination (PCX) operator [ 24]. 

Random sets of 
values of (f1,f2,f3,f4,f5) 

chromosomes 
population 

One set (f1,f2,f3,f4,f5)
with lowest objective 

function value

Two randomly 
selected sets of 

(f1,f2,f3,f4,f5) from 
the population  

Create two new 
sets of (f1,f2,f3,f4,f5), 

i.e., offsprings 
using PCX 

recombination  

Randomly 
select two sets 
of (f1,f2,f3,f4,f5) 

from the 
population  

Subpopulation of two 
offsprings and two 
randomly selected 

individuals  

Select two sets of 
(f1,f2,f3,f4,f5) having 

lowest objective 
function values 

Replace two randomly 
chosen individuals with 

individuals having lowest 
objective function values 
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Fig. 3.2. Flow chart of the generalized generation gap (G3) model. 

Generate random population, i.e., 
sets of values of (f1,f2,f3,f4,f5)

Compute the weld pool depth and width 
for each set of values of (f1,f2,f3,f4,f5) 

using the direct numerical model

Compute objective function using Eq. 
(3.12) for each set of values of (f1,f2,f3,f4,f5) 

Create new sets of values of 
(f1,f2,f3,f4,f5) using PCX based G3 

model 

Solution 
converged? 

Start 

No 

Yes 
Stop 
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 Finally, the offspring, i.e., ( )'
5

'
4

'
3

'
2

'
1 f,f,f,f,fy =v , is created as follows: 

∑
≠=
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)i()p()p( hDwdwxy
vvvv   (3.14) 

where (i)h
r

 are the orthonormal bases that span the subspace perpendicular to (p)d
r

, and wζ 

and wη are randomly calculated zero-mean normally distributed variables. The values of 

the variables that characterize the offspring, ( )'
5

'
4

'
3

'
2

'
1 f,f,f,f,fy =v , are calculated as 

follows: 
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 84
20 1 2

2 2 2 2 2
22

a b 2f f ff w 1
2 3dη

⎡ ⎤⎛ ⎞+ − −⎛ ⎞ ⎢ ⎥= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

  (3.26) 

20 1 2
3 3 32 2

32
2f f fa bf w 1

2 3dη

⎡ ⎤⎛ ⎞− −+⎛ ⎞ ⎢ ⎥= − ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

  (3.27) 

20 1 2
2 2 4 4 4

42
a b 2f f ff w 1

2 3dη

⎡ ⎤⎛ ⎞+ − −⎛ ⎞ ⎢ ⎥= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

  (3.28) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−⎟

⎠
⎞

⎜
⎝
⎛ +

= η

22
5

1
5

0
522

52 d3
fff2

1
2

ba
wf   (3.29) 

 The expressions for the variables d, a2, and b2, used in Eqs. (3.25) to (3.29), are as 

follows: 
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3.2 Results and Discussion 
 

3.2.1 Improving the reliability of the output of the numerical transport 
phenomena based model 

Since the calculations of temperature and velocity fields are based on well 

established principles of transport phenomena, the lack of reliability of the computed 

results originate from the uncertain values of the input parameters that cannot be 

specified from welding conditions. In order to address this problem, values of arc 

efficiency (η), arc radius (rb), arc power distribution factor (d), effective thermal 

conductivity of the molten metal (keff) and effective viscosity of the molten metal (µeff) 

were determined from a limited volume of experimental data using a genetic algorithm 

based global optimization technique. The experimental data used for this purpose are 

listed in Table 3.1. The optimized values of the five unknown input parameters are 

presented in Table 3.4.  

 

Table 3.4. Optimized values of the five unknown input parameters of the numerical 
transport phenomena based model. 
 

Unknown variable Value 

Arc efficiency, η 0.66 

Arc radius, rb (mm) 2.8 

Arc power distribution factor, d 2.0 

Effective thermal conductivity of liquid metal, keff (J/m-s-K) 125.5 

Effective viscosity of liquid metal, µeff (kg/m-s) 0.03 

 

 

The values of effective thermal conductivity and effective viscosity represent an 

enhancement of about 5 and 4 times, respectively, over the corresponding values for 

thermal conductivity and viscosity given in Table 3.2. This behavior is consistent with 

the presence of turbulent flow in the weld pool during GTA welding, as reported in the 
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literature [ 5, 25- 28]. De and DebRoy [ 5] reported the enhancement factors for thermal 

conductivity and viscosity in steel welds to be 4 and 15, respectively, using gradient 

based optimization techniques. Hong et al. [ 26] suggested an enhancement factor between 

12 and 15 for thermal conductivity and a factor more than 6 for the viscosity while using 

a 150 A current and 25 V based on peak temperature analysis in the weld pool and k-ε 

turbulence model calculations. Choo and Szekely [ 25] suggested an enhancement factor 

of 8 for thermal conductivity and a factor of 30 for the viscosity at a current of 100 A by 

matching the calculated weld pool geometry with the experimentally determined 

geometry. They [ 25] also verified the weld pool shape and values of enhancement factors 

using the k-ε turbulence model. Kumar and DebRoy [ 28] reported enhancement factors in 

the range of 5 to 9 for gas metal arc (GMA) fillet welding. The estimated values of arc 

efficiency, arc radius and arc power distribution factor are 0.66, 2.8 mm and 2.0, 

respectively, as shown in Table 3.4. Choo et al. [ 29] have reported arc efficiency values 

higher than 0.68, while Mendez et al. [ 30] indicated the arc radius to be approximately 

1.9 mm for currents of up to 300 A. The power distribution factor depends on the 

electrode angle and other experimental conditions, and its value varies between 0.5 and 

3.0. The differences in the values of the arc radius and the power distribution factor with 

their values reported in the literature are thought to be due to the differences in the 

experimental conditions. However, the values available in the literature [ 5, 25- 30] are 

specific to the welded material and welding conditions, and cannot be used in the present 

study.  

 The optimized values of the unknown input parameters were used to calculate the 

weld geometry for the five sets of welding conditions listed in Table 3.1. Fig. 3.3(a) to (e) 

show good agreement between the calculated and the experimentally measured weld pool 

geometries indicating the appropriateness of the computed uncertain input parameters. 

Furthermore, a good agreement between the computed and the experimental weld 

dimensions indicates that the numerical transport phenomena based model, using the 

optimized values of the unknown input parameters, can provide both the expected trends 

and the correct weld pool geometry for various sets of welding conditions. After the 

values of the uncertain input parameters are determined, the calculation procedure can 
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serve as a reliable link between the welding variables and the weld attributes such as the 

weld pool geometry. 
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Fig. 3.3. Experimental weld geometry and the calculated weld geometry, (a) to (e), 
obtained using the optimum set of values of the unknown input parameters for the five 
sets of welding conditions given in Table 3.1, i.e., 1 to 5, respectively. The 1745 K 
isotherm is the equilibrium solidus temperature of stainless steel, which marks the weld 
pool boundary. 

(d) 

(e) 
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3.3 Summary and Conclusions 

 

In the present study, solute conservation equations were incorporated into an 

already existing numerical heat transfer and fluid flow model for gas tungsten arc (GTA) 

welding to calculate the solute distribution in the weld. The lack of reliability of the 

results obtained from the current numerical transport phenomena based models of GTA 

welding in predicting weld pool geometry originate mainly from the uncertainty in the 

values of several input variables such as arc efficiency, arc radius, arc power distribution 

factor, effective thermal conductivity and effective viscosity of the molten metal. A 

transport phenomena based model for GTA welding can be combined with an 

evolutionary optimization algorithm to enhance the reliability of the computed 

temperature and velocity fields. By using a real number based GA, the values of these 

uncertain parameters were determined from a limited volume of experimental data for the 

GTA welding of stainless steel. The optimized values of the uncertain input parameters 

lie within the range of their values reported in the literature. The computed weld pool 

shape and size utilizing the optimized values of the uncertain input parameters agreed 

well with the corresponding experimentally determined values for various welding 

conditions indicating the effectiveness of the approach. Once the reliability of output of 

the transport phenomena based model has been enhanced, it can now be applied to 

determine the distribution of solutes in the weld, and their impact on the weld pool 

geometry (Chapter 6) and consumable design to avoid occurrence of weld defects like 

liquation cracking (Chapter 7) under similar welding conditions.  
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Chapter 4 
 

A Genetic Algorithm and Gradient Descent Based Neural Network with the 
Predictive Power of a Numerical Transport Phenomena Based Model for 

Welding 
 

As described in the previous chapters, numerical transport phenomena based 

models have provided significant quantitative insights into the fusion welding process. 

However, these powerful tools are not extensively used in the welding industry because 

they are complex, require specialized training to develop and test, and consume a large 

amount of computer time. A practical solution to this problem is to develop a neural 

network that is capable of providing high computational speed. 

Neural network models are powerful non-linear regression analysis methods [ 1- 5] 

that can relate input variables like welding process parameters and material properties 

with weld characteristics such as weld pool geometry. In recent decades, many 

researchers have attempted systematic correlations between welding variables and weld 

characteristics using artificial neural networks [ 1, 2, 6- 25]. The previous efforts to model 

the gas tungsten arc (GTA) welding process using neural network were based on training 

the network with experimental data [ 11, 15, 21]. Since the volume of experimental data 

required to train a neural network depends on the number of input and output variables, 

most previous efforts considered only few input parameters to keep the necessary volume 

of experimental data tractable [ 11, 15, 21]. For example, Tarng et al. [ 11], Andersen et al. 

[ 15] and Juang et al. [ 21] developed neural network models of GTA welding process, 

which considered the effects of process parameters like welding speed, arc current and 

voltage as inputs. These neural network models were developed using a limited volume 

of experimental data, and they could not determine the effect of material properties like 

thermal conductivity, specific heat, etc. on weld pool geometry. Furthermore, the output 

variables considered in these neural networks were also limited. For example, the existing 

neural network models do not provide any information about some of the important 

output parameters such as the cooling rate and peak temperature. A review of previous 

work indicates that what is needed is a framework for rapid calculation of weld pool 

geometry, cooling rate and peak temperature for the GTA welding of various materials. 
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In the present study, six feed forward neural networks have been developed for 

the GTA welding of stainless steel. Each network provides one of the six output 

parameters of GTA welds, i.e., depth, width and length of the weld pool, peak 

temperature, cooling time from 800°C to 500°C, and maximum liquid velocity. The 

networks require values of seventeen input parameters including the welding variables 

like current, voltage, welding speed, arc efficiency, arc radius, and power distribution 

factor, and material properties like thermal conductivity, specific heat and concentration 

of sulfur in steel. The training data is generated from the numerical transport phenomena 

based model developed in the present study. Since the training data is made up of results 

from the numerical transport phenomena based model, the outputs of the trained neural 

networks will comply with the basic phenomenological laws of welding physics. With 

the improvements in computational hardware and software in recent years, including 

faster machines and larger data storage capacity, a large volume of training and testing 

data can be generated with the numerical transport phenomena based models in a realistic 

time frame, such as a week or two for 1000 runs of the transport phenomena based 

model. The weights of the neural networks were calculated using two optimization 

schemes, first using a gradient descent (GD) method with various sets of randomized 

initial weights, and then applying a hybrid optimization scheme where a genetic 

algorithm (GA) is used in combination with the GD method. The neural networks 

produced by the hybrid optimization approach gave better results than all the networks 

based on only the GD method. Unlike the GD method alone, the hybrid optimization 

scheme could find the global optimal weights, which is illustrated by the good agreement 

between all the outputs from the neural networks and the corresponding results from the 

transport phenomena based model. 

 

4.1 Neural Network Model 
Six feed forward neural networks have been developed for the gas tungsten arc 

(GTA) welding of low carbon steel. Each neural network takes 17 input variables that 

include various welding variables such as arc current, voltage, welding speed, and 

material properties such as thermal conductivity, specific heat, and provides a single 
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output, which can be one of the six output parameters, i.e., depth, width and length of the 

weld pool, peak temperature, cooling time between 800°C and 500°C, and maximum 

liquid velocity in the weld pool. The cooling time was calculated on the work piece 

surface along the welding direction. The input variables such as arc efficiency, arc power 

distribution factor and arc radius determine how heat is absorbed at various locations in 

the work piece [ 26]. Since temperature independent thermophysical properties of the 

solid alloy are used in the model, a question arises as to how to select their values. As the 

heat flow in the solid region near the weld pool affects both the size and shape of the 

weld pool as well as the temperature field in the entire work piece, it is appropriate to use 

thermophysical properties at a temperature closer to the melting point than to the ambient 

temperature. Effective thermal conductivity and effective viscosity are used as input 

variables because they allow accurate modeling of the turbulence effect in the weld pool. 

These two variables are system properties, and their values are obtained by enhancing the 

molecular values of liquid thermal conductivity and viscosity, respectively. Optimized 

values for these two variables for GTA welding of stainless steel have been determined in 

Chapter 3. 

The structure of each neural network along with all the input and output variables 

is shown in Fig. 4.1. Each neural network contains an input layer, a hidden layer and an 

output layer. The input layer contains all the 17 input variables, which are connected to 

nodes in the hidden layer, represented by circles in Fig. 4.1, through the weights assigned 

for each link.  
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Fig. 4.1. Neural network architecture used in the present study. The input layer has 17 
input variables and the output layer has one of the six output variables, O, i.e., weld pool 
depth, weld pool width, weld pool length, peak temperature, cooling time from 800°C to 
500°C or maximum liquid velocity in the weld pool. Each connection to a node, j, from a 
node in the previous layer, i, has an adjustable weight, wij, associated with it. The weights 
embody the non-linear relationship between the input and the output variables. Each node 
in the hidden and the output layers is given an extra input, which always has a value of 1. 
The weight, wθ, of this extra input is called the bias. The net input, vj, for a node, j, is 
described in Eq. (4.1) and yi is the output of node, i. 
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The number of nodes in the hidden layer is found by optimizing the neural 

network. Each connection to a node, j, from a node in the previous layer, i, has an 

adjustable weight, wij, associated with it. The weights, wij, embody the non-linear 

relationship between the input and the output variables. Also, each node in the hidden and 

the output layers is given an extra input, which always has a value of 1. The weight of 

this extra input is called the bias. The net input, vj, for a node, j, is given as: 

θ+= ∑ wywv
i

iijj   (4.1) 

where i is a node in the previous layer, wij is the weight of the connection between nodes 

j and i, yi is the output of node i, and wθ is the bias weight. Equation (4.1) is calculated 

for all the nodes in the hidden layers as well as the output layer. 

Now, the output of node j is calculated by using a transfer function. A hyperbolic 

tangent function (a symmetric sigmoid function), which is a non-linear function 

producing output between -1 to +1, is used as transfer function for the nodes in the 

hidden layer, and a linear transfer function is used for the nodes in the output layer. The 

use of a non-linear transfer function in the hidden layer allows the network to learn 

nonlinear and linear relationships between input and output vectors [ 20], while the use of 

a linear transfer function in the output layer allows the network to produce values outside 

the range of –1 to +1. Thus, the output, xj, of a node j in the hidden layer is given by: 

( )jj vatanhx ×=  (4.2) 

where ‘a’ is the slope of the sigmoid function. By varying the parameter ‘a’, sigmoid 

functions of different slopes can be obtained [ 27]. Increase in the value of ‘a’ increases 

the slope of the activation function and vice versa. A very high value of the slope makes 

the curve close to a step function while a low value retards the convergence rate. Based 

on the findings of previous works, a value of 1.5 was used to achieve rapid convergence 

[ 28, 29]. Furthermore, the use of the tanh function in Eq. (4.2) as the activation function 

helps in keeping the problem reasonably well-conditioned. An attractive feature of the 
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hyperbolic tangent function is that its derivative does not increase computational volume 

significantly [ 27]. The output, xj, of a node j in the output layer is given by: 

jj vx =  (4.3) 

The training of a neural network implies finding a set of weights that minimize 

error between the desired output and the output calculated by the neural network. A back-

propagation algorithm [ 3] is used for the training of the neural networks. This algorithm 

tries to minimize the objective function, i.e., the mean square error (MSE) between the 

desired output and the neural network output. The MSE is defined as [ 3]:  

( )
kp

od
MSE p k

2
pkpk

×

−
=
∑∑

 (4.4) 

where p is the number of training datasets, k represents the number of output nodes, 

which is one in this work, dpk is the desired output and opk is the output produced by the 

neural network. The desired outputs of the neural network such as weld pool depth, 

width, and length, cooling rate, peak temperature and maximum liquid velocity are 

dependent on input welding conditions, material properties and the network parameters 

such as the weights. 

The back-propagation algorithm adjusts the weights in the steepest descent 

direction (negative of the gradient) [ 3]. This is the direction in which the error, E, 

decreases most rapidly. For a given set of input-output training data, the partial 

derivatives of the error with respect to each weight, ∂E/∂w, are calculated in two passes 

[ 3]. The forward pass calculates the output of each node in the hidden layers and the 

output layer, based on the inputs from the previous layers, as described by Eqs. (4.1) to 

(4.3). The backward pass propagates the derivatives from the output layer back to the 

input layer, and updates the weights [ 3]. The backward pass is well documented in the 

literature [ 3, 30] and is not described here. Once ∂E/∂w are calculated, the weights are 

changed by an amount proportional to ∂E/∂w as: 

w
Ew

∂
∂

ε−=∆  (4.5) 
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where ε is called the learning rate. A large learning rate enables quick convergence, but it 

can also lead to overstepping of the solution and oscillation of the error [ 8]. On the other 

hand, small learning rate may prevent oscillation of the error, but it requires much more 

time to reach the solution [ 8]. Therefore, in the present study ε was taken as 0.1 during 

initial iterations, and reduced to 0.01 once the error became very small. A simple method 

for increasing the rate of learning without oscillation is to include a momentum term in 

Eq. (4.5) as follows [ 3]: 

)1n(w
w
E)n(w −∆α+
∂
∂

ε−=∆  (4.6) 

where n is the number of iterations, an iteration being defined as a single sweep through 

all the input-output pairs in the training dataset, and α is an exponential decay factor 

between 0 and 1 that determines the relative contribution of the current gradient, ∆w(n), 

and the earlier gradients, ∆w(n-1), to the weight change. The value of α is set to 0.9 in 

the present study, based on guidance from previous research [ 20, 30]. 

The training of the neural network was started with random small weights. It was 

observed that after the initial rapid decrease in error, further descent became very 

sluggish, and the result depended on the initial random weights, which are common 

problems with gradient descent algorithms [ 4, 31, 32]. Furthermore, for simple two-layer 

networks (without a hidden layer), the error surface is bowl shaped and using gradient-

descent techniques to minimize objective function is not a problem. However, the 

addition of a hidden layer, used to solve more difficult problems like GTA welding 

process, increases the possibility for complex error surfaces which contain many minima. 

The gradient based methods can easily get trapped in such local minima. Stochastic 

optimization techniques are capable of finding the global minima and avoiding local 

minima [ 33- 35]. Therefore, a genetic algorithm [ 33- 35] is used along with the gradient 

descent method to find the optimal global weights in the present work. But, if the genetic 

algorithm is such a powerful technique in finding the global minima, then why should 

one even care about using the gradient based methods? Why not use only the genetic 

algorithm? The answer to this question again lies in the fact that genetic algorithm is a 

stochastic optimization method [ 33- 35]. It tends to explore a wide search space using 
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evolutionary principles [ 33- 35]. As a result, if only genetic algorithm is used in the 

present problem, it will take much longer than the hybrid scheme to reach global minima. 

The validity of the above argument is illustrated by Fig. 4.2, which shows the 

performance of genetic algorithm for the generalized Rosenbrock function, FRos, which is 

a standard test function, given by [ 34]: 

( ) ( )( )∑
=

+ −+−=
1-n

1i

2
i

2
1i

2
iRos 1xxx100F  (4.7) 

where i is the index for the number of variables, n is the number of variables considered 

(n=5 for the present example) and xi are the value of variables. The function FRos has 

minimum at xi = 1 with FRos = 0. Fig. 4.2 shows the minimization of FRos with iterations 

for two cases, (i) when a random search was conducted with the initially guessed values 

of xi lying in the range [-5,5], and (ii) when some guidance was provided to the genetic 

algorithm by introducing an initially guessed value of xi = 0.7, which is close to the 

actual solution of xi = 1. It can be seen in Fig. 4.2 that the guided search converges much 

faster than the random search. Therefore, in the present study, if some initial guidance is 

provided to the genetic algorithm by using the gradient based techniques, which rapidly 

decrease the error in the beginning, then the genetic algorithm can search for the global 

minima in much less time. Thus, a hybrid optimization scheme is adopted in the present 

study.   
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Fig. 4.2. The minimization of the generalized Rosenbrock function, FRos, given in Eq. 
(4.7), with iterations. Random search involved random initial guess, while guided search 
included an initial guess, which was close to the actual solution. 
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The genetic algorithm (GA) used in the present study is a parent centric recombination 

(PCX) operator based generalized generation gap (G3) model [ 33- 35]. This model was 

chosen because it has been shown to have a faster convergence rate on standard test 

functions as compared to other evolutionary algorithms and classical optimization 

algorithms [ 34]. Detailed description of this model is available in the literature [ 33- 38] 

and is not repeated here. To start with, many initial sets of randomly chosen values of 

weights were created. Five of these initial sets of weights were made equal to five 

different sets of weights calculated by the gradient descent algorithm. A systematic 

global search was next undertaken to find the most optimum set of weights that leads to 

the least mean square error (MSE), given in Eq. (4.4). The mean square error depends on 

the values of weights: 

( ) ( )q21 w,...,w,wMSEwMSE =  (4.8) 

where q is the number of weights in the network. The GA produced new individuals, or 

sets of weights, with iterations based on evolutionary principles [ 34, 35]. The specific 

application of G3-PCX model for obtaining the optimum set of weights is described as 

follows. 

 The algorithm for the model is as follows:  

1. A population is a collection of many individuals and each individual represents a set of 

randomly chosen weights. A parent refers to an individual in the current population. The 

best parent is the individual that has the best fitness, i.e., gives the minimum value of the 

mean square error, defined by Eq. (4.4), in the entire population. The best parent and two 

other randomly selected parents are chosen from the population. 

2. From the three chosen parents, two offsprings or new individuals are generated using a 

recombination scheme. PCX based G3 models are known to converge rapidly when three 

parents and two offsprings are selected [ 35]. A recombination scheme is a process for 

creating new individuals from the parents. 

3. Two new parents are randomly chosen from the current population. 

4. A subpopulation of four individuals that includes the two randomly chosen parents in 

step 3 and two new offsprings generated in step 2 is formed. 
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5. The two best solutions, i.e., the solutions having the least values of the mean square 

error, are chosen from the subpopulation of four members created in step 4. These two 

individuals replace the two parents randomly chosen in step 3.  

6. The calculations are repeated from step 1 again until convergence is achieved.     

The above steps, as applied to the present study, are shown in Fig. 4.3. The process of 

finding the optimum set of weights by minimizing the mean square error is illustrated in  

Fig. 4.4. The recombination scheme (step 2) used in the present model is based on 

the PCX operator. A brief description of the PCX operator, as applied to the present 

problem of optimum set of weights, is presented below. 

First three parents, i.e., ( )0
q
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1 w,...,w,w , ( )1

q
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1
1 w,...,w,w , ( )2

q
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1 w,...,w,w  are 
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mean vector or centroid of the three chosen parents is computed. To create an offspring, 

one of the parents, say ( ) ( )0
q

0
2

0
1

par w,...,w,wx =v  is chosen randomly. The direction vector, 

( ) ( ) gxd parpar vvv
−= , is next calculated from the selected parent to the mean vector or 

centroid. Thereafter, from each of the other two parents, i.e., ( )1
q

1
2

1
1 w,...,w,w  and 

( )2
q

2
2

2
1 w,...,w,w , perpendicular distances, Di, to the direction vector, ( )pard

v
, are computed 

and their average, D , is found. Finally, the offspring, i.e., ( )'
q

'
2

'
1 w,...,w,wy =v , is created 

as follows: 

∑
≠=

ηζ ++=
q

pari,1i

)i()par()par( hDvdvxy
vvvv   (4.9) 

where (i)h
r

 are the orthonormal bases that span the subspace perpendicular to ( )pard
v

, and vζ 

and vη are randomly calculated zero-mean normally distributed variables.  
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Fig. 4.3. Generalized generation gap (G3) genetic algorithm using parent centric 
recombination (PCX) operator. 
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Fig. 4.4. Flow chart of the generalized generation gap (G3) model. 
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 The values of the variables that characterize the offspring, ( )'
q

'
2

'
1 w,...,w,wy =v , 

are calculated next. As an example, only the calculation of '
1w  and '

2w will be described 

here: 

1211
0
1

'
1 wwww ++=   (4.10) 

2221
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The expressions for the variables d, a2, and b2, used in Eqs. (4.14) and (4.15), are as 

follows: 
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4.2 Calculation Procedure 

Neural networks require a large database for training and testing. The number of 

training datasets should be more than the number of weights connecting different nodes. 

For a single hidden layer network, the number of weights, q, is given as: 

( ) ( ) ohhi n1nn1nq ×++×+=  (4.23) 

where ni is the number of input variables, i.e., 17 in the present work, nh is the number of 

nodes in the hidden layer and no is the number of output variables, i.e., 1. For double 

hidden layer network: 

( ) ( ) ( ) o2h2h1hhi n1nn1nn1nq ×++×++×+=  (4.24) 

where nh1 and  nh2 are the number of nodes in hidden layers 1 and 2, respectively. Since 

the number of weights increases with the increase in the number of hidden layers, an 

optimal number of hidden layers are needed.  

 
4.2.1 Number of hidden layers in the network 
 Number of hidden layers in neural network depends on the type of problem and 

the relationships between the input and the output variables represented through the 

objective function. Theoretically, any continuous variation of output with respect to input 

can be represented by a single hidden layer [ 39, 40]. Two hidden layers are needed when 

the relationship between the input and the output variables are discontinuous [ 39, 40]. The 

use of more than optimal number of hidden layers in the network may result in 

undesirable over-fitting of the data [ 27, 39, 40]. A single hidden layer was used since the 

outputs are continuous in nature in the GTA welding.  
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4.2.2 Database generation 
 A database for training of the neural networks was generated to capture the effects 

of all the welding variables and material properties. Out of the 17 input variables in GTA 

welding, 10 most important variables that affect the output significantly include current, 

voltage, welding speed, arc radius, arc power distribution factor, arc efficiency, effective 

thermal conductivity of liquid, effective viscosity of liquid, thermal conductivity of solid, 

and the concentration of sulfur. The complex interactions between these 10 variables 

were captured by making 1250 different runs of the three dimensional numerical 

transport phenomena based model considering about 10 different values of each variable. 

The effect of the remaining variables such as density, specific heat of the solid, specific 

heat of the liquid, etc. was captured by making 500 different runs of the numerical 

transport phenomena based model considering about 6 different values of each variable. 

Considering sufficient number of different values of the variables increases the degrees of 

freedom and helps to capture the effect of the variables, which have large influence on 

the weld geometry and cooling rate. Out of the 1750 total runs conducted, 1250 datasets 

were included in the training dataset and the remaining 500 datasets formed the testing 

dataset for the validation of the neural network. Thus, the combinations of the values of 

variables in the testing datasets were completely different from those in the training 

datasets. The 17 input variables and their ranges of values used for the generation of 

datasets are shown in Table 4.1. The ranges of values of the input variables correspond to 

the GTA welding of stainless steel. Furthermore, Fig. 4.5 shows that the different values 

considered for each variable are well distributed about the mean value for the variable, 

which ensures that the effect of almost the entire range of values for each variable can be 

taken into account in the datasets. 
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Table 4.1. The input variables and their ranges of values considered in the training 
datasets. 

 

Variables Minimum 
value 

Maximum 
value 

Arc current, I (A) 9.00E+01 2.50E+02 

Voltage, V (V) 9.60E+00 2.60E+01 

Arc efficiency, η 3.50E-01 8.50E-01 

Arc radius, r (m) 1.00E-03 2.90E-03 

Arc power distribution factor, d 5.00E-01 3.00E+00 

Welding speed, U (m/s) 1.00E-03 1.00E-02 

Density of liquid, ρ (kg/m3) 6.60E+03 7.80E+03 

Effective viscosity of liquid, µ (kg/m-s) 6.00E-02 1.00E-01 

Liquidus temperature, Tl (K) 1.73E+03 1.77E+03 

Solidus temperature, Ts (K) 1.785E+03 1.845E+03 

Enthalpy of solid at melting point, Hs (J/kg) 1.05E+06 1.15E+06 

Enthalpy of liquid at melting point, Hl (J/kg) 1.32E+06 1.42E+06 

Specific heat of solid, Cps (J/kg-K) 6.27E+02 7.86E+02 

Specific heat of liquid, Cpl, (J/kg-K) 7.74E+02 8.99E+02 

Thermal conductivity of solid, ks (J/m-s-K) 2.30E+01 3.97E+01 

Effective thermal conductivity of liquid, kl (J/m-s-K) 8.36E+01 5.02E+02 

Concentration of sulfur in steel, Cs (wt%) 0.00E+00 3.50E-01 

 
 



 110

 

 
 

 

Fig. 4.5. The ranges of values of the input variables in the training and testing datasets. 
The normalized values of the variables were obtained using Eq. (4.25) and corresponding 
minimum and maximum values listed in Table 4.1. 
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4.2.3 Normalizing inputs and outputs 
 There is significant variation in the scales of values of the input and output 

variables. The vastly different scales of inputs and bias values lead to ill-conditioning of 

the problem [ 27, 28]. While large inputs cause ill-conditioning by leading to very small 

weights, large outputs do so by leading to very large weights [ 27, 28]. To eliminate the ill-

conditioning problem, the data was normalized using the following formula [ 27, 28]: 

1
xx

xx
2x

minmax

min −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
×=′  (4.25) 

where x is the original value of the variable, x´ is the normalized value, while xmin and  

xmax represent the minimum and maximum values of the variable in all the datasets. 

Equation (4.25) normalizes the data in the range of -1 to 1. The range of values of all 

input and output parameters from -1 to +1 implies that the standard deviation cannot 

exceed 1, while its symmetry about zero means that the mean will typically be relatively 

small. Furthermore, its maximum derivative is also 1.5, so that back-propagated errors 

will be neither magnified nor attenuated more than necessary [ 27, 28]. 

 

4.2.4 Selection of initial weights 
 In the back-propagation algorithm, the magnitude of the error propagated 

backward through the network is proportional to the value of the weights. If all the 

weights are the same, the back propagated errors will be the same, and consequently all 

of the weights will be updated by the same amount [ 27, 28]. To avoid this symmetry 

problem, the initial weights of the network were selected randomly. Furthermore, to 

avoid the premature saturation of the network, the initial values of the weights were 

distributed inside a small range of values, i.e., in the interval [-0.5, 0.5]. When the 

weights are small, the units operate in the linear regions of the transfer function and 

consequently the transfer function does not saturate.  

 The calculation starts with the selection of number of nodes in the hidden layer. 

The total number of weights in the network depends upon the number of nodes in the 

hidden layer. The weights are then initialized randomly in the interval [-0.5, 0.5]. In the 

next step, a back-propagation algorithm is used to minimize the error on the training 
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dataset. The optimized weights calculated by the gradient descent method are stored as 

one possible set of weights. This process is repeated 5 times with different randomly 

selected initial weights for fixed values of nodes in the hidden layer for each output 

variable. All of these five optimized sets of weight are provided as input to the GA. The 

final aim of the GA is to find the weights in the network through a systematic global 

search that will give the least error between the neural network prediction and numerical 

transport phenomena based calculations. The flowchart of the calculation scheme is 

presented in Fig. 4.6. The convergence is based on the error in training and testing data. 

When the error during testing starts increasing, the calculation is stopped to avoid over-

fitting even if the error with training dataset decreases with further iterations.  

 

4.3 Results and Discussion 
 
4.3.1 Structure chosen for the neural networks 

The selection of suitable network architecture is important as it affects the 

network’s convergence as well as the accuracy of predictions [ 6]. The number of nodes in 

the hidden layer were varied to get an optimum number of nodes that resulted in 

minimum mean square error (MSE) defined in Eq. (4.4). The average MSE of five runs 

made with different initial random weights is plotted in Fig. 4.7 for different number of 

nodes in the hidden layer. The results are for all the six neural networks with different 

output variables, and the runs were conducted using the gradient descent method. Fig. 4.7 

shows that for all the six neural networks the average MSE decreases with increase in the 

number of hidden nodes. For the neural networks with weld pool depth, width, and 

length, and cooling time from 800°C to 500°C, the MSE becomes almost constant for 

more than 14 hidden nodes in the network. Even for the neural networks with peak 

temperature and maximum velocity as the output variables, the decrease in MSE on 

increasing the number of hidden nodes above 14 is rather insignificant. Therefore, 

networks with 14 nodes in the hidden layer were used in the present study. 
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Fig. 4.6. Flowchart for training the neural network. 
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Fig. 4.7. Comparison of mean square error (MSE), defined by Eq. (4.4), for different 
number of nodes in the hidden layer. For each output variable the results are an average 
of five runs, with different sets of initial random weights, using the gradient descent 
training method. The number of iteration for each run were 5000. 
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4.3.2 Gradient descent versus hybrid training approach  
As described earlier in the section on mathematical modeling, the neural network 

model developed in the present study uses a combined gradient descent and genetic 

algorithm (hybrid) training approach. The initial guidance is provided by gradient descent 

algorithm and then the GA finds the global minimum of the mean square error (MSE) to 

provide a well trained network. The neural networks were first trained on the training 

dataset of 1250 input-output pairs using the gradient descent method. Since the output of 

this method depends on the initial set of guessed weights, five sets of initial random 

weights were used. In order to assess the performance of the gradient descent method, the 

decrease of MSE with iterations is plotted for all the six neural networks in Fig. 4.8. Each 

plot represents an average of five runs with different random initial weights in order to 

avoid any local optimal solution. It can be seen that in all the cases the error decreases 

very rapidly for the first 2000 iterations, but after that further decrease is very slow. Since 

further improvement in error was very slow and insignificant, the training of the network 

using the gradient descent method was stopped after 5000 iterations. The MSE values for 

the six neural networks, after training by the gradient descent method for 5000 iterations, 

have been listed in Table 4.2. 

 

Table 4.2. Comparison of the mean square error (MSE), defined in Eq. (4.4), for the 
gradient descent method and the hybrid training approach. The results for the gradient 
descent method were taken after 5000 iterations. 

 

Output variable MSE 
Gradient descent 

MSE 
Hybrid approach 

Weld pool depth (mm) 5.37×10-4 1.50×10-4 

Weld pool width (mm) 3.39×10-4 6.77×10-5 

Weld pool length (mm) 2.80×10-4 4.00×10-5 

Peak temperature (K) 1.17×10-3 1.87×10-4 

Cooling time 800°C to 500°C (s) 1.50×10-4 3.89×10-6 

Maximum velocity (mm/s) 2.69×10-3 9.99×10-4 
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Fig. 4.8. Mean square error (MSE), defined by Eq. (4.4), versus number of iterations for 
the gradient descent training method. For each output variable five runs were conducted 
with different sets of initial random weights. The error bars show the variation of MSE 
values over the five runs. 
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Now, to test the performance of the hybrid approach, the five sets of weights 

calculated after 5000 iterations of the gradient descent method, were given as inputs to 

the genetic algorithm (GA). Adding these sets of weights to the initial population of GA 

ensures the presence of five sets of near optimum weights within the starting population, 

and helps in finding the global solutions more efficiently. Two convergence criteria were 

used. The first criterion required the training to stop if the mean square error (MSE) 

became less than 1.0×10-6, which is a low enough acceptable error for the problem at 

hand. For example, for an input depth value of 2.5 mm, the MSE of 1.0×10-6 in the non-

dimensionalized depth value would correspond to an actual error of 0.004 mm, which is 

very small. The second criterion was based on the concern of over-fitting of the neural 

network [ 4, 20, 22, 27]. During training of the neural network, the error on the training data 

is driven to a very small value, but when new data are presented to the network, the error 

is large. This means that the network has memorized the training examples, but it has not 

learned to generalize to new situations [ 20]. A common method of avoiding this problem 

is that while training the network, its performance is simultaneously tested on a set of 

testing data. The training of the network is stopped as soon as the mean square error in 

the testing data starts increasing. This was set as the second convergence criterion in the 

present study in order to avoid over-fitting of the neural network. The testing dataset 

consists of 500 input-output pairs, and the ranges of values of the input and output 

parameters lie within their ranges of values given in Table 4.1. The GA found the global 

set of weights giving much improved mean square errors as listed under hybrid approach 

in Table 4.2. It can be seen that the MSEs for all the neural networks using the hybrid 

approach are much better than those obtained using gradient descent method alone. 

To further compare the performance of the gradient descent and the hybrid 

approaches, the five sets of weights provided by the gradient descent approach and the 

global set of weights provided by the hybrid approach, were used to calculate the 

respective output variable values from the neural network for the training and the testing 

datasets. Fig. 4.9(a) shows the absolute value of the difference between the training data 

and the corresponding results from neural network, for weld pool width as the output 

variable, while Fig. 4.9(b) shows similar plot for testing data. Fig. 4.9(c) and (d) show 
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similar plots for peak temperature as the output variable. These plots contain results for 

the five sets of weights obtained using the gradient descent method and the global set of 

weights obtained using the hybrid approach. It can be seen that in all the cases the 

weights from the hybrid approach provide results that fit much better to both the training 

and the testing data. The results obtained by using the weights from gradient descent 

method have much more scatter as compared to those obtained from hybrid approach. 

Similar results were obtained for other output variables as well. Thus, the hybrid 

approach provides a well trained network with global optimal weights, where the output 

from the trained neural network can accurately map the inputs to the outputs. 

The values of the five set of weights from gradient descent method and those from 

hybrid approach have been plotted in Fig. 4.10(a) and (b) for output variables of weld 

pool depth and maximum liquid velocity, respectively. It can be seen that the weights 

from the gradient descent method are mostly confined to a narrow range of [-1.0, 1.0], 

which is very close to their initial range of [-0.5, 0.5], while the weights from the hybrid 

approach are scattered in a much wider area. For example, the global set of weights for 

weld pool depth lie in the range of [-8.0, 6.0] and those for maximum liquid velocity lie 

in the range of [-7.0, 4.0]. This means that in the hybrid approach, the genetic algorithm 

(GA) explored a much wider search area, irrespective of the initial guessed values, and 

was able to find the global optimal weights. Thus, the hybrid approach conducts a more 

thorough search of the possible search space, and provides a better trained network. 
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Fig. 4.9. Absolute value of the difference between (a) the weld pool width in the training 
data and that calculated from neural network (NN); (b) the weld pool width in the testing 
data and that calculated from neural network (NN); (c) the peak temperature in the 
training data and that calculated from neural network (NN); and (d) the peak temperature 
in the testing data and that calculated from neural network (NN). The results are for the 
five sets of weights calculated by gradient descent (GD) method, and the global set of 
weight calculated by the hybrid approach. 
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Fig. 4.10. Comparison of the values of weights for the gradient descent and hybrid 
training approaches for (a) weld pool depth, and (b) maximum liquid velocity in the weld 
pool. Cases 01 to 05 are for the five sets of weights obtained from gradient descent 
method when using five different sets of initial random weights.  
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4.3.3 Evaluating the predicting capability of the neural networks 

Six neural networks have been developed, each providing a specific output, i.e., 

depth, width and length of the weld pool, peak temperature, cooling time between 800°C 

and 500°C or maximum liquid velocity in the weld pool. The predicting capability of the 

neural networks is illustrated in Fig. 4.11 and Fig. 4.12, which compare the output 

parameters calculated by the model with their corresponding values provided in the 

training and the testing datasets. Fig. 4.11(a) and (b) compare the weld pool depth 

calculated by the neural network with that provided in the training and testing datasets, 

respectively. All points lie on or very close to the diagonal line and the results obtained 

from the neural network agree well with the values calculated using numerical transport 

phenomena based model. The MSE for the training dataset was 1.5×10-4 mm2 and that for 

the testing dataset was 5.0×10-4 mm2, which was the least error that could be obtained on 

the testing dataset. To further evaluate the error in the values of weld pool depth provided 

by the neural network model, the absolute value of mean error, ME, between the target 

depth, i.e., the one given in the training and the testing datasets, and the depth calculated 

by the neural network is calculated as: 

∑
=

−=
p

1i
ii od

p
1ME  (4.26) 

where i is the index for the input dataset, p is the number of input datasets, di is the 

desired output and oi is the output produced by the neural network. The ME for depth in 

the training dataset was 0.04 mm and that in the testing dataset was 0.07 mm, where a 

typical depth value for GTA welding of low carbon steel is 2.3 mm. Thus, the error in 

depth is well within the error limits for the process being considered. 

In Fig. 4.11(a) the depth varies from 0.9 to 8.5 mm, depending on the values of 

the input process parameters and the material properties. This shows that the process 

parameters and material properties considered in the present study have a significant 

impact on the weld pool depth. The fact that the neural network model could accurately 

predict the depth values for all the cases in Fig. 4.11(a) and (b), indicates that it is capable 
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of accurately representing the results of the three-dimensional numerical transport 

phenomena based model for GTA welding. 

Fig. 4.11(c) and (d) show similar results for weld pool width, and Fig. 4.11(e) and 

(f) show similar results for weld pool length. Similarly, the results for peak temperature 

are presented in Fig. 4.12(a) and (b), those for cooling time between 800°C and 500°C in 

Fig. 4.12(c) and (d), and those for maximum liquid velocity in the weld pool in Fig. 

4.12(e) and (f). The corresponding MSEs and MEs are listed in Table 4.3. The MEs for 

the training data for weld pool width and length, peak temperature, cooling time between 

800°C and 500°C and maximum liquid velocity in the weld pool are 0.05 mm, 0.05 mm, 

4 K, 0.01 s and 5 mm/s, respectively. These MEs are quite small compared to the 

respective magnitudes of these output variables, which are also listed in Table 4.3. 

Though the MEs for the testing data were slightly higher than those for the training data 

in all the cases, the difference was not very significant as can be seen from Table 4.3. All 

the results indicate that the neural networks can accurately predict different features of 

weld pool geometry as well as the peak temperature and cooling time, and hence can be 

used for simulations with predetermined good accuracy. 

 

Table 4.3. The mean square error (MSE), defined in Eq. (4.4), and mean error (ME), 
defined in Eq. (4.26), for the results of the neural network for the weld pool geometry, 
peak temperature, cooling time between 800°C and 500°C and maximum liquid velocity 
in the weld pool. The results were obtained using the hybrid training approach. 

 

Output variable 
MSE 

Training 
data 

MSE 
Testing 

data 

ME 
Training 

data 

ME 
Testing 

data 

Typical 
value in 
the data 

Weld pool depth (mm) 1.50×10-4 5.00×10-4 0.04 0.07 2.3 

Weld pool width (mm) 6.77×10-5 3.24×10-4 0.05 0.09 6.8 

Weld pool length (mm) 4.00×10-5 1.00×10-4 0.05 0.09 8.7 

Peak temperature (K) 1.87×10-4 6.90×10-4 4 8 2237 
Cooling time 800°C to 
500°C (s) 3.89×10-6 1.57×10-5 0.01 0.01 2.0 

Maximum velocity (mm/s) 9.99×10-4 3.72×10-3 5 10 190 
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Fig. 4.11. Comparison of weld pool (a) and (b) depth, (c) and (d) width and (e) and (f) 
length calculated by the respective neural networks and those given in the training and 
the testing datasets, respectively. 
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Fig. 4.12. Comparison of (a) and (b) peak temperature, (c) and (d) cooling time between 
800°C and 500°C and (e) and (f) maximum liquid velocity in the weld pool calculated by 
the respective neural networks and those given in the training and the testing datasets, 
respectively. 
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4.4 Summary and Conclusions 
Six neural networks have been developed for GTA welding of stainless steel. 

Each of these neural networks takes 17 input variables, which include welding process 

parameters and important material properties, and provides one output variable. The 

output variables include depth, width and length of the weld pool, peak temperature, 

cooling time from 800°C to 500°C and maximum liquid velocity in the weld pool. The 

networks were trained using a hybrid optimization scheme including the gradient descent 

method and a genetic algorithm. The hybrid approach gave lower errors than only the 

gradient descent method on both training and testing datasets, and the results did not 

depend on the initial choice of weights. The training and testing datasets contained results 

from the reliable numerical transport phenomena based model for GTA welding. The 

accurate prediction of these results by the neural networks ensured that the output of 

these networks complies with the phenomenological laws of welding physics. 
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Chapter 5 
 

Tailoring Weld Geometry Using a Genetic Algorithm and a Neural Network 
Trained with Numerical Transport Phenomena Based Calculations 

 

Weld attributes like geometry and cooling rate are strong functions of the welding 

process parameters such as arc current, voltage and welding speed. A specific weld pool 

geometry can be produced using multiple sets of these welding variables, i.e., different 

combinations of arc current, voltage and welding speed [ 1]. The available numerical 

transport phenomena based models are unidirectional in nature, i.e., they are designed to 

calculate temperature and velocity fields for a given set of welding variables. In other 

words, they cannot predict the welding variables needed to achieve a target weld 

geometry [ 1] or other weld attributes. Furthermore, these models are comprehensive and 

require significant amount of computer time to run. For example, the computational 

methodology described in Chapter 3, for finding the optimized values of the uncertain 

input parameters of the numerical transport phenomena based model, required more than 

200 runs of the numerical model, and it took several days to do these many runs. At 

present, there is no systematic methodology that can determine, in a realistic time frame, 

such as a few minutes, the multiple sets of welding variables to achieve a specified weld 

geometry based on scientific principles.  

Three main requirements need to be satisfied by a model for systematic tailoring 

of a weld attribute such as weld geometry based on scientific principles. First, the model 

should be capable of capturing all the major complex physical processes occurring during 

the gas tungsten arc (GTA) welding. Second, the model must have a bi-directional 

capability. In other words, in addition to the capability of the traditional  unidirectional, 

forward models to compute the weld shape and size from a given set of welding 

variables, it should also have the inverse modeling ability, i.e., it should be able to 

systematically predict welding variables needed to produce a target weld geometry. 

Finally, the model must be able to determine various welding variable sets needed to 

attain a target weld geometry within a reasonable time.  
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Since multiple combinations of welding variables can lead to a target weld 

geometry [ 1], the classical gradient-based search and optimization methods that produce 

a single optimum solution cannot be used. These methods use a point-by-point approach, 

where one relatively imperfect solution in each iteration is modified to a different more 

appropriate solution [ 2, 3]. Therefore, a combination of a classical optimization method 

with a phenomenological model can provide only a single local optimum solution in 

situations where multiple solutions exist. In contrast, genetic algorithms (GA) can obtain 

a population of optimal solutions [ 2- 5]. In the context of welding, a GA can 

systematically search for multiple combinations of welding variable sets that comply with 

the phenomenological laws of welding physics and improve with iterations [ 1].  

Recently, Kumar and DebRoy [ 1] developed bi-directional phenomenological 

model of gas metal arc (GMA) fillet welding by coupling a genetic algorithm based 

optimization method with a three-dimensional numerical transport phenomena based 

model. They [ 1] showed that the above approach can predict multiple combinations of 

welding variables to achieve a target geometry. However, this model [ 1] is unsuitable for 

practical applications, since it requires several days of computer calculations, even when 

run on a parallel computing facility, i.e., running the model on multiple processors 

simultaneously to reduce computational time. Unless a model can do calculations in a 

reasonable time, it is unlikely to find widespread practical applications. 

Neural network models are powerful non-linear regression analysis methods [ 6-

 11] that can relate input variables like welding process parameters and material properties 

with weld characteristics such as weld pool geometry. If a neural network is trained with 

the data generated from a numerical transport phenomena based model for fusion 

welding, the output of the trained neural network will comply with the basic 

phenomenological laws of welding physics. With the improvements in computational 

hardware in recent years, a large volume of training and testing data can be generated 

with a well tested numerical transport phenomena based model in a realistic time frame.  

It is shown in the present study that multiple combinations of welding variables necessary 

to achieve a target GTA weld geometry can be systematically computed by a real number 

based genetic algorithm and a neural network that has been trained with the results of the 
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numerical transport phenomena based model. The neural network has been developed in 

the present study and is described in the previous chapter. The neural network could 

accurately predict the results of fusion zone geometry, peak temperature and cooling rate, 

obtained from the numerical transport phenomena based model, indicating that the output 

of the network complies with the phenomenological laws of welding physics. A genetic 

algorithm is used to determine a population of solutions, by minimizing an objective 

function that represents the difference between the calculated and the desired values of 

weld pool penetration and width. The use of a neural network in place of the numerical 

transport phenomena based model significantly expedites the computational task. The 

desired weld geometry could be obtained with various combinations of welding variable 

sets.  

 
5.1 Mathematical Model  

The main computational engine used here includes two neural network models, 

which are trained and validated using the results of a well tested numerical transport 

phenomena based model described in Chapter 3. The details of the neural network 

models have been described in the previous chapter. The two neural network models 

considered here relate 17 important input welding variables and material properties to the 

weld pool penetration and width. The neural networks are computationally more efficient 

than the numerical transport phenomena based model. Furthermore, the results from the 

neural networks match accurately with the corresponding results from the numerical 

transport phenomena based model. 

The genetic algorithm (GA) based search for multiple sets of welding variables to 

achieve a target weld geometry starts with many initial sets of randomly chosen values of 

the three most important welding variables, i.e., arc current, voltage and welding speed. 

A systematic global search is next undertaken to find multiple sets of values of these 

three welding variables that lead to least error between the calculated and the target weld 

dimensions, i.e., penetration and width. The neural network model calculates the values 

of these weld dimensions for each set of input welding variables. The chosen values of 

welding variables do not always produce the desired weld dimensions and the resulting 
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mismatch between the computed and the desired weld dimensions is expressed by the 

following objective function, O(f):  
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where pc and wc are the computed penetration and width of the weld bead, respectively 

and pt and wt are the corresponding target or desired values of these attributes. The 

objective function, O(f), depends on the three main welding variables, i.e., arc current, I, 

voltage, V, and welding speed, U. 
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In Eq. (5.2), the reference values, Ir, Vr and Ur represent the order of magnitude of the 

welding variables. Note that Eq. (5.2) is made non-dimensional to preserve the 

importance of all three welding variables by making their non-dimensional values 

comparable in magnitude. The GA produces new individuals, or sets of welding 

conditions, with iterations based on the evolutionary principles [ 1, 3- 5]. The GA used in 

the present study is a parent centric recombination (PCX) operator based generalized 

generation gap (G3) model [ 1, 3- 5]. This model was chosen because it has been shown to 

have a faster convergence rate on standard test functions as compared to other 

evolutionary algorithms and classical optimization algorithms [ 3, 4]. The specific 

application of this model for obtaining the multiple sets of welding variables to achieve a 

target weld geometry is described as follows. The explanations of various terms used in 

GA as related to welding are described in Chapter 3 (Table 3.3).  

The algorithm for the model is as follows:  

1. A population is a collection of many individuals and each individual represents a set of 

randomly chosen values of the three input variables, i.e., arc current, voltage and welding 

speed. A parent refers to an individual in the current population. The best parent is the 

individual that has the best fitness, i.e., gives the minimum value of the objective 

function, defined by Eq. (5.1), in the entire population. The best parent and two other 

randomly selected parents are chosen from the population. 
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2. From the three chosen parents, two offsprings or new individuals are generated using a 

recombination scheme. PCX based G3 models are known to converge rapidly when three 

parents and two offsprings are selected [ 3, 4]. A recombination scheme is a process for 

creating new individuals from the parents. 

3. Two new parents are randomly chosen from the current population. 

4. A subpopulation of four individuals that includes the two randomly chosen parents in 

step 3 and two new offsprings generated in step 2 is formed. 

5. The two best solutions, i.e., the solutions having the least values of the objective 

function, are chosen from the subpopulation of four members created in step 4. These two 

individuals replace the two parents randomly chosen in step 3.  

6. The calculations are repeated from step 1 again until convergence is achieved.   

The above steps, as applied to the present study, are shown in Fig. 5.1. The 

working of the model to find the multiple sets of welding variables by minimizing the 

objective function is illustrated in Fig. 5.2. The recombination scheme (step 2) used in the 

present model is based on the PCX operator. A brief description of the PCX operator, as 

applied to the present problem, is presented below. 
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Fig. 5.1. Generalized generation gap (G3) genetic algorithm using parent centric 
recombination (PCX) operator. 
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Fig. 5.2. Flow chart of the generalized generation gap (G3) model. 
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 The expressions for the variables d, a2, and b2, used in Eqs. (5.10) to (5.12), are as 

follows: 
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5.2 Results and Discussion 
The neural network used here was trained and validated with results from a well 

tested three-dimensional numerical transport phenomena based model described in 
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Chapter 3. As described in the previous chapter, separate feed forward neural networks 

were developed, one each for predicting penetration and width of GTA butt welds to 

achieve high accuracies in the calculation of these output parameters. The weights in the 

neural network models were calculated using a hybrid optimization scheme involving the 

gradient descent (GD) method and a genetic algorithm (GA). The hybrid optimization 

scheme helped in finding optimal weights through a global search as evidenced by good 

agreement between all the outputs from the neural networks and the corresponding results 

from the numerical transport phenomena based model. The neural network model 

provided correct values of penetration and width for various combinations of welding 

variables, i.e., current, I, voltage, V, and welding speed, U.  

It has been shown recently [ 1] that by coupling a GA based optimization method 

with a three-dimensional numerical transport phenomena based model, multiple 

combinations of welding variables can be predicted to achieve a target weld geometry. 

This is possible because GA can provide a population of solutions. In the present study, 

the neural network model was combined with a real number based GA to tailor weld 

geometry. The effectiveness of the approach was tested by finding different sets of 

welding variables, which could provide a specified weld geometry. The computational 

task involved three steps. First, a target weld geometry was selected by specifying one set 

of values of penetration and width. Second, the model was run to obtain multiple 

combinations of welding variable sets each of which could produce the target weld 

geometry. Third, and final, the results obtained from the model were adequately verified. 

These three steps are explained in detail in the following discussion. 

 To start the calculation, the specification of a target weld geometry was 

necessary. It involved stating realistic combinations of the weld penetration and width. 

To test the model, these weld dimensions from an actual welding experiment were 

specified as a target geometry. The target weld geometry was obtained experimentally in 

the present study using the following welding variables: I = 101.0 A, V= 9.9 V and U = 

3.4 mm/s for GTA welding of 303 stainless steel (0.293 wt% sulfur), and the resulting 

weld dimensions were: penetration = 1.39 mm and width = 4.05 mm. If the model works 

correctly, the various combinations of welding variables obtained from the model must 
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include a set of welding variables that are fairly close to the set of variables used in the 

experiment. It should be noted that the ability of the model to produce this solution is 

only a necessary, but not sufficient component of the model verification. Since the model 

produces multiple solutions, other solutions obtained from the model have to be verified 

by comparing the calculated weld geometry with the experimentally obtained geometry. 

In the next step (i.e. second step), a population of 120 individuals was defined to 

start the operation of GA. This number of variable sets was determined based on how the 

population size influences the effectiveness of GA using standard test functions [ 3, 4]. 

Each individual in the population contained a set of randomly chosen welding variables, 

i.e., arc current, voltage and welding speed. Fig. 5.3(a) shows the initial values of the 

individuals, i.e., sets of I, V and U.  
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Fig. 5.3: Initial values of individual welding variable sets and their objective functions. 
(a) A large space of variables was searched to find optimum solutions as shown by 120 
randomly selected initial welding variable sets. (b) The low values of the objective 
functions of several individuals in the initial population indicate the possibility of 
existence of multiple optimal solutions. 

(a) 

(b) 
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Values of the welding variables I, V and U were chosen randomly in the range of 

75-300 A, 8-30 V and 1.7-10.0 mm/s, respectively. Such large ranges of values were 

chosen for the welding variables in order to explore a large domain of welding variables 

to include all possible solutions and also to maintain diversity in the solutions. These 

welding variable sets were then improved iteratively using a combination of GA and the 

neural network. The progress of the iterations was monitored by calculating the objective 

function values, defined in Eq. (5.1), for each set of welding variables. An individual 

with a low objective function value indicates that the I, V and U values it contains result 

in a small discrepancy between the computed and the target weld geometry. Fig. 5.3(b) 

shows that for many sets of welding variables, the computed values of the objective 

function, O(f), are fairly low, indicating that each of these variable sets can produce a 

weld geometry that is close to the target geometry.  

Fig. 5.4(a), (b) and (c) indicate several welding variable sets that have 

progressively lower objective function values. The objective function values are lower 

than 0.1, 0.01 and 0.001, corresponding to the 1st, 10th and 25th generation of 

individuals, respectively. It is noteworthy that in Fig. 5.4, the sets of welding variables 

are distributed throughout the welding variable space, signifying the existence of multiple 

paths to attain the specified weld geometry. The progressive reduction of the objective 

function values of the best individuals indicates that the solutions are improved with 

iterations. The calculation was continued until 5% individuals in the population had the 

value of objective function less than 1.0×10-5. The chosen value of the objective function 

ensured sufficient accuracy within the practical limits of experimental errors. The 

calculated combinations of the welding variables, which constitute the final solutions, are 

presented in Table 5.1. The calculations required less than one minute in a PC with 3.0 

GHz Intel P4 CPU and 1024 MB PC2700 DDR-SDRAM memory. It is useful to recall 

that several days of computational time was required on similar machines by a model 

developed by Kumar and DebRoy [ 1] that used a numerical transport phenomena based 

model. This time saved by using a neural network justifies its use as a forward model in 

place of a numerical transport phenomena based model.   
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Fig. 5.4: Several fairly diverse welding variable sets could produce low values of the 
objective function indicating the existence of alternate paths to obtain the target weld 
geometry. The plots show the welding variable sets that produced low values of the 
objective function, O(f), with iterations. (a) individuals after 1st iteration with O(f) less 
than 0.1, (b) individuals after 10th iteration with O(f) less than 0.01, and (c) individuals 
after 25th iteration with O(f) less than 0.001. 

(a) 

(b) 

(c) 
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Table 5.1: Various combinations of welding variables, i.e., arc current (I), voltage  (V) 
and welding speed (U) obtained using neural network model to achieve the following 
target weld dimensions: penetration = 1.39 mm and width = 4.05 mm. The target weld 
geometry was obtained experimentally using the following welding variables: I = 101.0 
A, V= 9.9 V and U = 3.4 mm/s for GTA welding of 303 stainless steel (0.293 wt% 
sulfur). 

    

Individual 
Solutions 

I 
(Amp) 

V 
(Volt) 

U 
(mm/s) 

Penetration 
(mm) 

Width 
(mm) 

(a) 102.6 9.8 3.4 1.40 4.08 

(b) 86.6 23.3 9.0 1.39 4.06 

(c) 97.2 10.1 3.2 1.39 4.04 

(d) 133.6 11.4 9.6 1.39 4.06 

(e) 115.6 10.2 5.1 1.39 4.05 

(f) 126.8 10.3 6.7 1.39 4.05 

(g) 88.6 9.7 2.2 1.39 4.04 

(h) 94.3 9.5 2.6 1.39 4.06 

 

The third step involved verification of the computed solutions. Since the target 

geometry was produced by conducting an experiment, an initial test is to check if the 

population of solutions produced by the model includes a set of welding variables that is 

very close to, if not the same as, that used to produce the weld.  Note that the values of 

arc current, voltage and welding speed in solution (a) of Table 5.1 are almost the same as 

the corresponding experimental values. Each solution, i.e., a set of current, voltage and 

welding speed, listed in Table 5.1, was used to calculate the geometric parameters, i.e., 

penetration and width of the weld using the neural network. The computed geometric 

parameters were compared with those produced in the experiment. Table 5.1 shows that 

for each set of computed welding conditions, the corresponding geometric parameters 

agreed well with the desired experimental values. In order to further test the accuracy of 

the solutions, i.e., sets of current, voltage and welding speed listed in Table 5.1, the weld 

geometry for each case was calculated from the numerical transport phenomena based 

model for GTA welding described in Chapter 3. These calculated weld geometries were 
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compared with the experimental target weld geometry, as shown in Fig. 5.5(a) to (h). The 

calculated weld pool boundary is marked by the solidus temperature of stainless steel, 

i.e., 1745 K. Fig. 5.5 shows that all the optimized solutions listed in Table 5.1 result in 

the correct prediction of the target weld shape and size. Furthermore, the solutions in 

Table 5.1 exhibit significantly different values of the welding variables indicating the 

diversity of the paths through which the specified geometry can be obtained. For 

example, Table 5.1 shows that the current values ranged from 86.6 to 133.6 A, voltages 

varied between 9.5 to 23.3 V and welding speed changed from 2.2 to 9.6 mm/s in various 

sets of optimized values. The fact that all these diverse viable paths can lead to the same 

weld pool dimensions clearly indicates the complexity and significant non-linearity of the 

fusion welding system.  

A similar exercise was also undertaken where a hypothetical weld geometry 

represented by a penetration of 1.94 mm and a width of 4.39 mm was produced by a 

current of 124.3 A, voltage of 9.4 V and welding speed of 3.0 mm/s in 304RL stainless 

steel (0.024 wt% sulfur). Table 5.2 lists all other combinations of welding variables, i.e., 

solutions (b) to (h) that can produce this geometry. The values of the welding variables 

differed considerably from each other. For example, current, voltage and welding speed 

varied among solutions by 38%, 30% and 55%, respectively. All these differences in the 

important welding variables indicate significant diversity in the paths, all of which lead to 

the same set of target weld dimensions.  
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Fig. 5.5: Comparison of the experimental target weld geometry with those calculated 
from the numerical transport phenomena based model for GTA welding described in 
Chapter 3. Calculated weld geometries in cases (a) to (h) correspond to the eight 
solutions, i.e., sets of current, voltage and welding speed listed in Table 5.1. In the 
calculated results the weld pool boundary is marked by the 1745 K isotherm, which is the 
solidus temperature of stainless steel.  

(e) 

(f) 

(g) 

(h) 
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Table 5.2: Various combinations of welding variables, i.e., arc current (I), voltage  (V) 
and welding speed (U) obtained using neural network model to achieve the following 
target weld dimensions: penetration = 1.94 mm and width = 4.39 mm. The target weld 
geometry was obtained using the welding conditions listed in (a). 

    

Individual 
Solutions 

I 
(Amp) 

V 
(Volt) 

U 
(mm/s) 

Penetration 
(mm) 

Width 
(mm) 

(a) 124.3 9.4 3.0 1.94 4.39 

(b) 79.3 16.0 3.1 1.94 4.37 

(c) 99.9 9.8 1.7 1.94 4.33 

(d) 116.4 9.3 2.5 1.94 4.38 

(e) 145.7 9.0 4.2 1.94 4.36 

(f) 89.3 12.4 2.3 1.94 4.36 

(g) 107.0 9.6 2.1 1.94 4.37 

(h) 175.9 8.6 6.0 1.94 4.37 

 

 

5.3 Summary and Conclusions 
A bidirectional model of gas tungsten arc (GTA) welding was developed by 

coupling a neural network model with a real number based genetic algorithm to calculate 

the welding conditions needed to obtain a target weld geometry. Unlike conventional 

neural network models that are trained with experimental data, which predict weld 

geometry for a particular set of welding conditions, the proposed model could estimate 

the welding conditions necessary for obtaining a target weld geometry within the 

framework of phenomenological laws.   

The model was used to determine multiple sets of welding variables, i.e., 

combinations of arc current, voltage and welding speed to obtain a specified weld 

geometry. It was found that a specific weld geometry was attainable via multiple 

pathways involving various sets of welding variables. Furthermore, these sets of welding 

variables involved significantly different values of current, voltage and welding speed. 

The use of a neural network model in place of numerical transport phenomena based 

model reduced the computation time and provided the solution within one minute. The 
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high speed makes the neural network based model appropriate in various applications 

where rapid calculations are desired. Good agreement between the model predictions and 

the experimental data of weld pool penetration and width for various welding conditions 

shows that this approach is promising.   
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Chapter 6 
 

Evolution of Weld Pool Geometry on Welding Plates with Same and 
Different Sulfur Contents 

 

 The solute distribution in a weld has significant impact on its properties such as 

the evolution of weld pool geometry. For example, when stainless steel containing 

surface active elements like sulfur is welded, the temperature coefficient of surface 

tension, dγ/dT, often becomes positive, causing the liquid metal to flow from the 

periphery to the center of the weld pool. This fluid motion moves hot fluid downwards in 

the middle of the weld pool resulting in a deep and narrow weld bead. This phenomenon 

has been well captured both via experiments and mathematical models for welding of two 

plates with same sulfur content [ 1- 12]. 

An important question that is related to but different from the above example is 

what would happen if the two plates being welded have different sulfur contents. The 

available models cannot address these problems. Such situations are common in the 

nuclear waste management industry where stabilization, packaging and storage of 

plutonium-bearing materials involve welding of 316 stainless steel (SS) container (0.03 

wt% sulfur) with 416 SS lid (>0.15 wt% sulfur) [ 13]. The final closure of the container 

must be leak-tight and structurally sound [ 13- 15]. Another example is the tungsten inert 

gas (TIG) welding of small diameter stainless steel tubing for instrumentation systems in 

CANDU (Canadian Deuterium Uranium) nuclear reactors [ 12]. Experiments have shown 

that during welding of two stainless steel plates with different sulfur contents the point of 

maximum penetration shifts towards the plate with lower sulfur content [ 10, 12]. The 

weld bead shift is sometimes so severe that there is very little melting of the piece with 

higher sulfur content, i.e., lack-of-fusion defect occurs at the interface, resulting in 

improper joining of the two pieces [ 12]. Since many of the instrumentation systems in a 

nuclear reactor contain the primary coolant, insufficient fusion of the interface is 

unacceptable [ 12]. 

Heiple et al. [ 5] gave a qualitative explanation for the shifting of the weld bead 

based on their surface tension driven fluid flow model. They stated that the plate with 
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lower sulfur content has relatively higher surface tension than the one with higher sulfur 

content. The result is a net surface tension gradient across the weld pool leading to 

surface fluid flow toward the low sulfur plate. This flow pattern causes maximum 

penetration in the plate containing less sulfur. However, once the weld pool is formed, 

liquid metal in the weld pool circulates vigorously causing mixing of sulfur from the two 

plates. Actual surface tension gradient should depend on the final sulfur distribution in 

the weld pool. Also, during a similar experiment, Rollin et al. [ 10] observed that the 

welding arc was displaced towards the low sulfur side. They [ 10] stated that the arc shift 

should also be a contributing factor to the weld bead shift, along with the surface tension 

driven fluid flow. A thorough quantitative modeling effort, which can take into account 

all the factors affecting weld bead shift, and predict the location, size and shape of the 

weld bead when joining two plates with different sulfur contents, is still lacking in the 

literature. 

In the present study, the evolution of weld pool geometry of GTA welds is 

examined when welding two stainless steel plates with different sulfur contents. The 

numerical transport phenomena based model, described in Chapter 3, is used to calculate 

the sulfur distribution in the weld pool and the resulting weld pool geometry. The 

modification of weld pool convection pattern due to top surface sulfur distribution, and 

the shifting of the welding arc towards the low sulfur side are identified as the two main 

factors contributing to the evolution of weld pool geometry. The experimental results 

were provided by Dr. T. J. Lienert and Dr. M. Johnson of the Los Alamos National 

Laboratory. The calculated weld pool geometry is in fair agreement with the 

corresponding experimental results indicating the validity of the approach. 

 

6.1 Experimental Procedure 
Three grades of stainless steel (SS), i.e., 303 (0.293 wt% sulfur, S), 304RL (0.024 

wt% S) and 304L (0.003 wt% S), were used in the present study. Grade 303 is a high 

sulfur containing SS while grade 304L has negligible amount of sulfur. The compositions 

of the three grades of SS are given in Table 6.1. Specimens or plates measuring 50.8 mm 

(width) × 254 mm (length) × 9.5 mm (height) were prepared for each grade of SS. Pairs 
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of plates containing same and different sulfur contents were welded using gas tungsten 

arc (GTA) welding. No preheat was used. Argon was used both as the welding and the 

shielding gas. The welding conditions used in the present study are given in Table 6.2. 

The first six cases in Table 6.2 correspond to the welding of plates having same sulfur 

contents, while the rest of the cases are for the welding of plates with different sulfur 

contents. Two current levels and two welding speeds were employed in the experiments. 

After welding, conventional polishing and etching techniques were used to reveal the 

fusion zone boundary, and weld pool width and penetration were measured. The top 

surface and bulk concentrations of surface active elements, sulfur and phosphorus, were 

measured by Electron Probe MicroAnalysis (EPMA).  

 

Table 6.1. Compositions of the three grades of stainless steels (SS) used in the present 
study. 
 

SS C P S Si Mn Cr 
304L 0.022 0.028 0.003 0.303 1.811 18.537 

304RL 0.019 0.031 0.024 0.322 1.412 18.151 
303 0.050 0.027 0.293 0.510 1.620 17.210 

 

SS Ni Mo Ti N Cu Co 
304L 8.453 0.296 NA 0.052 0.246 NA 

304RL 8.660 0.039 0.003 0.047 0.400 0.101 
303 8.720 NA NA NA NA NA 
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Table 6.2. Welding conditions used in the present study. Case numbers 1 to 6 list the 
cases where the two welded specimens contained the same amount of sulfur. The 
remaining entries are for the cases where the two welded specimens contained different 
amounts of sulfur. 
 

Case 
no. 

SS 
(Left) 

SS 
(Right) 

Current 
(A) 

Voltage 
(V) 

Welding speed 
(mm/s) 

1 304L 304L 101 9.6 1.7 

2 304RL 304RL 100 9.6 1.7 

3 304L 304L 150 9.9 1.7 

4 303 303 150 10.5 1.7 

5 304RL 304RL 100 10.0 3.4 

6 303 303 101 9.9 3.4 

7 304L 303 150 10.5 1.7 

8 304RL 303 150 10.8 1.7 

9 304L 304RL 150 10.5 1.7 

10 304L 303 150 10.8 3.4 

11 304RL 303 150 10.9 3.4 

12 304L 304RL 150 10.7 3.4 

13 304L 303 100 9.8 1.7 

14 304RL 303 100 10.0 1.7 

15 304L 304RL 100 9.9 1.7 

16 304L 303 100 10.2 3.4 

17 304RL 303 100 10.2 3.4 

18 304L 304RL 100 10.0 3.4 

 

 

6.2 Mathematical Model 
 The numerical transport phenomena based model for fusion welding has been 

described in detail in Chapter 3. Therefore, only the effect of surface active element, 
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sulfur, on weld pool convection, and the incorporation of this effect in the numerical 

transport phenomena based model will be described here. 

 

6.2.1 The effect of surface active element, sulfur on weld pool convection 

The spatial gradient of surface tension (γ) is a stress, which is known as the 

Marangoni shear stress. This stress arises due to spatial variation of temperature and 

composition, which can be expressed as: 

r
C

Cr
T

T ∂
∂

∂
γ∂

+
∂
∂

∂
γ∂

=τ  (6.1) 

where τ is the shear stress due to surface tension, T is the temperature, r is the distance 

along the surface from the heat source, and C is the concentration of surface active 

element, sulfur. When the materials being welded either have no sulfur or have the same 

composition of sulfur throughout, then the concentration gradient, ∂C/∂r, is zero, and the 

difference in surface tension is due to the spatial temperature variation alone. In other 

words, the shear stress depends only on ∂γ/∂T and the spatial temperature gradient ∂T/∂r 

at the pool surface. 

In the absence of sulfur, the temperature coefficient of surface tension (∂γ/∂T) for 

many materials is less than zero. In other words, the higher the temperature, the lower the 

surface tension. Hence, at the weld pool top surface, the liquid metal flows radially 

outward, since the warmer liquid metal of lower surface tension near the center of the 

pool is pulled outward by the cooler metal of higher surface tension at the pool edge [ 1-

 5]. Pushed by the strong outward flow at the top surface, the liquid metal is transported 

outwards from the middle of the weld pool and rises at the center of the pool, as shown in 

Fig. 6.1(a).  
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Fig. 6.1. Liquid convection in the weld pool for two cases: (a) ∂γ/∂T is negative, which is 
generally the case when surface active element like sulfur is absent. (b) ∂γ/∂T is positive, 
which is generally the case when surface active element like sulfur is present. Symbol γ is 
the surface tension, ∂γ/∂T is the temperature coefficient of surface tension, T is the 
temperature, x and z are two locations in the weld pool, and F is the driving force. 
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The presence of sulfur in the weld pool can make the value of ∂γ/∂T positive [ 1-

 5], because sulfur tends to preferentially segregate to the surface and change the surface 

properties. For liquid material with a positive value of ∂γ/∂T, the direction of the 

Marangoni shear stress and the resulting flow pattern are shown in Fig. 6.1(b). This flow 

pattern is expected, since the cooler metal of lower surface tension at the pool edge is 

pulled inward by the warmer liquid metal of higher surface tension near the center of the 

pool. 

Surface tension for a binary Fe-S alloy is given as a function of both temperature 

and activity of sulfur as [ 2]: 

[ ]ssmm Ka1lnRT]TT[A +Γ−−−γ=γ  (6.2) 
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where γm is the surface tension of the pure metal at melting point, Tm is the melting point 

of the material, as is the activity of sulfur, A is negative of ∂γ/∂T for pure metal, Γs is the 

surface excess at saturation, k1 is the entropy factor, and ∆H0 is the standard enthalpy of 

adsorption. Since the amount of sulfur in stainless steel is very small (dilute solution), the 

activity of sulfur in Eq. (6.2) is replaced by concentration of sulfur in wt%, C [ 2]. The 

validity of Eq. (6.2) for application in stainless steel has been demonstrated in reference 

[ 16]. By differentiating Eq. (6.2) with respect to temperature the expression for ∂γ/∂T as a 

function of both temperature and sulfur concentration can be obtained as [ 2]:  
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where m
sH∆  is the partial molar enthalpy of mixing of sulfur in the solution. For dilute 

solution, m
sH∆  is taken as zero [ 2]. Using Eq. (6.4) and the data given in Table 6.3, ∂γ/∂T 

is plotted as a function of temperature for different sulfur concentrations in Fig. 6.2. It 

can be seen that for low sulfur concentrations such as 0.003 wt%, ∂γ/∂T is negative over 

the entire temperature range. Negative ∂γ/∂T causes the liquid to move from the center to 

the periphery on the top surface leading to a wide and shallow weld pool. On the other 

hand, for very high sulfur concentrations such as 0.3 wt%, ∂γ/∂T is positive over the 
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entire temperature range. Positive ∂γ/∂T causes the liquid to move from the periphery to 

the center on the top surface leading to a narrow and deep weld pool. 

When the two plates being welded have different sulfur contents then the value of 

∂C/∂r in Eq. (6.1) is no longer zero and the value of ∂γ/∂C must be calculated. 

Differentiating Eq. (6.2) with respect to sulfur concentration gives: 

KC1
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+
Γ

−=
∂
γ∂  (6.5) 

The influence of surface active element sulfur is incorporated in the numerical 

model in the form of surface tension boundary condition on the top surface. The surface 

tension boundary condition is given as: 
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(6.6) 

where u, v and w are the velocity components along the x, y and z directions, 

respectively, ∂γ/∂C is the concentration coefficient of surface tension and ∂γ/∂T is the 

temperature coefficient of surface tension. As shown in Eq. (6.6), the u and v velocities at 

the surface are determined from the surface tension gradient effect. The w velocity is zero 

since there is no flow of liquid metal perpendicular to the pool top surface. 
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Fig. 6.2. Temperature coefficient of surface tension, dγ/dT, as a function of temperature 
for stainless steel specimens containing 0.003 wt%, 0.007 wt%, 0.012 wt%, 0.03 wt%, 
0.04 wt% , 0.06 wt%  and 0.3 wt% sulfur. 
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6.2.2 Loss of sulfur from the top surface 
Because of the high temperatures involved during fusion welding vaporization of 

alloying elements takes place from the top surface. Sulfur is also lost from the surface 

and this fact is incorporated into the model by applying a mass loss boundary condition at 

the top surface. The loss of sulfur from the top surface involves two steps: (i) transfer of 

sulfur from the bulk to the free surface and (ii) vaporization of sulfur from the free 

surface. The flux of sulfur from the bulk to the free surface, JS, is given as [ 17]: 

z
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D
dz
dCDJ bulksur

S ∆
−

=−=  (6.7) 

where D is the diffusion coefficient of sulfur in molten steel, Csur is the concentration of 

sulfur at the top surface, Cbulk is the concentration of sulfur in the bulk and ∆z is the 

distance along the z-direction. The evaporation flux of sulfur vapor, JB, is given as [ 18]: 

( )ambsure,MB CCkJ −=  (6.8) 

where kM,e is the evaporation mass transfer coefficient and Camb is the concentration of 

sulfur in the vapor phase. Assuming mass conservation at the top surface, JS becomes 

equal to JB. Combining Eqs. (6.7) and (6.8) and assuming Camb equal to zero gives the 

mass loss boundary condition at the top surface as: 
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where i denotes the current iteration and i+1 denotes the next iteration and ∆z is the 

distance along the z-direction.  

The value of KM,e was obtained from the study of Ohno and Ishida [ 19]. They [ 19] 

heated iron-sulfur (Fe-S) alloys, containing 0.18 to 0.42 wt% sulfur, to 1873±20 K in a 

high-frequency induction furnace under 1 atm pressure of argon. Then, maintaining the 

same temperature, they [ 19] kept the alloys under vacuum (10-2 – 10-3 mm Hg) for 5, 10 

and 15 minutes and measured the amount of sulfur loss in each case. They [ 19] calculated 

the specific evaporation constant or the evaporation mass transfer coefficient, Ki (cm/s), 

for sulfur by using the following expression: 
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where %i is the concentration of sulfur in wt%, t is time in s, A is the surface area of the 

melt in cm2, V0 is the initial volume of the melt in cm3 and ν is the volume change of the 

melt in cm3/s. Four alloys having different sulfur contents were studied. The value of ν 

was approximately independent of time and was experimentally determined for each 

alloy. Taking log of Eq. (6.10) and rearranging gave: 
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Ohno and Ishida [ 19] plotted sulfur concentration versus log(V/V0), as shown in Fig. 6.3, 

where V is equal to V0-νt. For each alloy, four data points were plotted as shown in Fig. 

6.3, which correspond to keeping the heated alloys under vacuum for 0, 5, 10 and 15 

minutes, respectively. The initial sulfur content of an alloy corresponds to time, t = 0 in 

Eq. (6.11). A linear relationship was obtained for each alloy in Fig. 6.3, indicating that 

first order kinetics was followed. Using Eq. (6.11) and the slopes of the lines in Fig. 6.3, 

Ohno and Ishida [ 19] calculated the value of Ki for each alloy. The values of Ki for the 

four alloys were as follows: alloy with 0.18 wt% sulfur - Ki = 6.6×10-6 m/s; alloy with 

0.26 wt% sulfur - Ki = 6.7×10-6 m/s; alloy with 0.35 wt% sulfur - Ki = 8.4×10-6 m/s; and 

alloy with 0.42 wt% sulfur - Ki = 7.0×10-6 m/s. Based on these values of Ki, an average 

value of 7.2×10-6 m/s has been used for KM,e in the present study. The data used in the 

calculations are given in Table 6.3. The same set of data was used for all the three kinds 

of stainless steels listed in Table 6.1 because the difference in the values of physical 

properties of these steels was less than 2% [ 20]. Owing to the low value of KM,e, the 

sulfur loss from the top surface was not significant in the present study.  
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Table 6.3. Data used in the calculations.  
 

Problem data/physical property Value Reference 

Liquidus Temperature, Tl (K) 1785.0 [ 21] 

Solidus temperature, Ts (K) 1745.0 [ 21] 

Density of metal, ρ (kg/m3) 7200.0 [ 21] 

Thermal conductivity of solid, ks (J/m-s-K) 25.08 [ 21] 

Specific heat of solid, Cps (J/kg-K) 702.24 [ 21] 

Specific heat of liquid, Cpl, (J/kg-K) 806.74 [ 21] 

Temperature coefficient of surface tension, dγ/dT (N/m-K) -0.47×10-3 [ 21] 

Coefficient of thermal expansion, β (K-1) 1.50×10-6 [ 21] 

Viscosity of molten iron, µfl (kg/m-s) 6.70×10-3 [ 21] 

Surface excess of sulfur at saturation, Γs (mol/m2) 1.30×10-3 [ 2] 

Enthalpy of adsorption for sulfur, ∆H0 (J/kg-mol)  -1.66×106 [ 2] 

Entropy factor, k1 3.18×10-3 [ 2] 
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Fig. 6.3. Desulphurization of Fe-S alloys at 1600 °C [ 19]. V is equal to V0-νt, where V0 is 
the initial volume of the melt in cm3, ν is the volume change of the melt in cm3/s, and t is 
time in s. Initial sulfur contents of the four alloys were: 6510-13 had 0.18 wt%, 6505-8 
had 0.26 wt%, 6510-12 had 0.35 wt% and 6510-11 had 0.42 wt%. The data points for 
each alloy correspond to keeping the heated alloys under vacuum for 0, 5, 10 and 15 
minutes, respectively.  
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6.3 Results and Discussion 
 
6.3.1 Role of phosphorus as a surface active element  

Besides sulfur, other elements like oxygen and phosphorus are also surface active 

in nature and affect the surface tension of molten steel [ 2, 22]. In the three kinds of 

stainless steels used in the present study, some amount of phosphorus is also present. Fig. 

6.4 shows the variation of surface tension of liquid iron with the amount of different 

surface active elements. It can be seen from this figure that phosphorus has a very small 

influence on the surface tension of liquid iron. Therefore, the effect of phosphorus as a 

surface active element was neglected in the present study. 

  

6.3.2 Evolution of weld pool geometry on welding two plates with same 
sulfur contents 
 

The evolution of weld pool geometry on welding two plates with same sulfur 

contents has been well understood in the literature [ 1- 12]. Therefore, as a first step, the 

numerical transport phenomena based model developed in the present study was 

validated by applying it to gas tungsten arc (GTA) welding of stainless steel plates having 

same sulfur contents. The calculated weld pool penetration and width are compared with 

the corresponding experimental results in Table 6.4. The data sets in Table 6.4 are 

arranged in a manner such that case numbers 1 and 2 have the same energy input but 

different sulfur contents. Similar argument applies to case numbers 3 and 4, and case 

numbers 5 and 6 also. Thus, the effect of sulfur on weld pool geometry can be clearly 

observed. The experimental and calculated weld pool geometries corresponding to cases 

1 to 6 in Table 6.4 are shown in Fig. 6.5(a) to (f), respectively. 
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Fig. 6.4. Surface tension versus atom% for solutions of C, P, N, O, S and Se in liquid iron 
at 1823 K [ 22]. After P. Kozakevitch, in “Surface Phenomena of Metals”, Society of 
Chemical Industry Monograph 28 (1968) p. 223. 
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The effect of sulfur on weld pool geometry can be described by comparing one 

pair in Fig. 6.5 where the energy input was the same but the sulfur contents were 

different, i.e., Fig. 6.5(c) and (d). These two figures show the experimental and the 

calculated weld pool geometries for stainless steel welds containing 0.003 wt% and 0.293 

wt% sulfur, respectively. It can be seen that the weld containing 0.293 wt% sulfur has a 

much deeper penetration than that containing 0.003 wt% sulfur. This result can be 

explained on the basis of the convection dominant heat transport in the weld pool. The 

relative importance of convection and conduction in the overall transport of heat in the 

weld pool can be assessed from the value of the Peclet number, Peh, which is given by: 

k
LCu

Pe P
h

ρ
=  (6.12) 

where u is the velocity, ρ is the density, CP is the specific heat at constant pressure, L is 

the characteristic length, and k is the thermal conductivity of the melt. When Peh is large, 

which in physical terms means large melt velocity, large weld-pool, and poor thermal 

conductivity, heat is transported primarily by convection. The Peh values for the six cases 

listed in Table 6.4 and shown in Fig. 6.5(a) to (f) are calculated in Table 6.5. The 

maximum values of the Peclet number for the two cases being compared, i.e., Fig. 6.5(c) 

and (d) are 31 and 20, respectively. Such high Peclet numbers indicate that convection is 

dominant in transporting the heat in the weld pool. As a result, the weld pool geometry is 

largely determined by the direction of the liquid flow. The direction of liquid flow is in 

turn governed by the sign of ∂γ/∂T. For Fig. 6.5(c), the sulfur content is 0.003 wt%. 

Referring to Fig. 6.2 it can be seen that for 0.003 wt% sulfur, ∂γ/∂T is negative for the 

entire temperature range, i.e., the entire weld pool top surface in Fig. 6.5(c). The negative 

value of ∂γ/∂T results in an outward flow and consequently a shallow and wide weld pool 

is formed. In Fig. 6.5(d), the specimen contains 0.293 wt% sulfur, and Fig. 6.2 shows that 

for such high sulfur contents ∂γ/∂T is positive over the entire temperature range. Positive 

∂γ/∂T causes the convection pattern to be radially inwards resulting in a deep and narrow 

weld pool. The directions of the liquid velocities and the weld pool shape and size in Fig. 

6.5(c) and (d) are consistent with the above observation. Similar comparison can be made 

between Fig. 6.5(a) and (b) and Fig. 6.5(e) and (f). Good agreement between the 
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calculated and measured weld pool geometries in all the cases shown in Fig. 6.5(a) to (f), 

corresponding to cases 1 to 6 in Table 6.4, indicate that the role of sulfur on the weld pool 

geometry could be reasonably predicted by the numerical transport phenomena based 

model.  
 

Table 6.4. Welding variables and experimentally measured weld pool penetration and 
width. The experimental data was provided by Dr. T. J. Lienert and Dr. M. Johnson of 
Los Alamos National Laboratory. ‘Exp’ stands for experimental results while ‘Cal’ 
stands for calculated results. 
 

Weld pool 
penetration (mm) 

Weld pool 
width (mm) Case 

no. 
Current 

(A) 
Voltage 

(V) 

Welding 
speed 

(mm/s) 
Sulfur 
(wt%) Exp Cal Exp Cal 

1 101 9.6 1.7 0.003 1.37 1.36 4.83 4.93 

2 100 9.6 1.7 0.024 1.94 1.97 4.37 4.41 

3 150 9.9 1.7 0.003 2.18 2.02 6.80 6.93 

4 150 10.5 1.7 0.293 3.12 3.09 5.91 6.07 

5 100 10.0 3.4 0.024 1.22 1.27 4.15 4.13 

6 101 9.9 3.4 0.293 1.39 1.41 4.05 4.10 

 
 

Table 6.5. The values of Peclet numbers (Peh) for heat transfer for the six cases listed in 
Table 6.4 and shown in Fig. 6.5.  

 

Case 
no. 

Velocity, u 
(m/s) 

Density, 
ρ  

(kg/m3)

Specific heat, 
CP 

(J/kg-K) 

Length, 
L 

(m) 

Thermal 
conductivity, k 

(W/m-K) 

Peclet 
number, 

Peh 
1 0.235 7200 807.1 0.0012 125.5 13 

2 0.256 7200 807.1 0.0011 125.5 13 

3 0.384 7200 807.1 0.0017 125.5 31 

4 0.279 7200 807.1 0.0015 125.5 20 

5 0.208 7200 807.1 0.0010 125.5 10 

6 0.263 7200 807.1 0.0010 125.5 13 
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Fig. 6.5. Experimental and calculated weld pool geometry, (a) to (f), for the six sets of 
welding conditions given in cases 1 to 6 of Table 6.4, respectively. The 1745 K isotherm 
is the equilibrium solidus temperature of stainless steel, which marks the weld pool 
boundary. 

(d) 

(e) 

(f) 
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6.3.3 Geometry of weld pool during welding of two plates with different 
sulfur concentrations 

The welding conditions for the experiments where the two welded specimens 

contained different amounts of sulfur are listed in Table 6.2 in case numbers 7 to 18. The 

welding cases in Table 6.2 are organized such that sets of three cases, for example, case 

numbers 7 to 9 have the same energy input but different combinations of the stainless 

steels (SS) used in the present study. The left plate always has the stainless steel with the 

lower sulfur content. In case 7, 304L SS is welded to 303 SS, in case 8, 304RL SS is 

welded to 303 SS, and in case 9, 304L SS is welded to 304RL SS. Case numbers 10 to 

12, 13 to 15, and 16 to 18 are organized in the same manner. For the same SS 

combination, the energy input decreases in the following order: 7 > 10 > 13 > 16. Such an 

organization of results will facilitate easy analysis of the effect of energy input and SS 

combination on the weld pool geometry. 

First, it is important to analyze the key features of the welded specimens and the 

welding conditions so that they can be incorporated in the modeling. Fig. 6.6 shows the 

experimental micrograph for case number 13 of Table 6.2, where a 304L SS plate (left 

plate) having low sulfur content (0.003 wt%) is welded to a 303 SS plate (right plate) 

having very high sulfur content (0.293 wt%). The joint of the two plates is denoted by the 

vertical white line next to location ‘A’ in Fig. 6.6. Following are some key features 

associated with this micrograph: 

(a) The weld pool is shifted towards the lower sulfur plate with less melting on the high 

sulfur side. This is known as the lack-of-fusion defect [ 12] and it results in improper 

joining of the two pieces. 

(b) The point of maximum penetration, C, is shifted by a distance AB from the joint of 

the two plates. The length AB is also known as the center line shift (CLS) [ 12].  

(c) During experiments, the arc shifted towards the low sulfur side. Similar observation 

has been reported in the literature [ 10]. The occurrence of arc shift has been demonstrated 

in the present study by conducting the following experiment. Looking from the left hand 

side of the setup shown in Fig. 6.7, in the first half of the setup, a low sulfur plate (304L – 

0.003 wt% sulfur) was kept on the right hand side and a high sulfur plate (304RL – 0.024 
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wt% sulfur) was kept on the left hand side. After half way, the plates were reversed, i.e., 

the left plate was made the low sulfur plate and the right plate the high sulfur plate as 

shown in Fig. 6.7. The resulting shift of the weld bead top surface and the arc towards the 

low sulfur side can be seen in Fig. 6.7 and Fig. 6.8, respectively. Fig. 6.8(a) corresponds 

to welding of the first half of the setup shown in Fig. 6.7 and therefore, the arc is shifted 

towards right, i.e., the location of the low sulfur plate (304L). Fig. 6.8(b) corresponds to 

welding of the latter half of the setup causing the arc to shift towards left, i.e., the new 

location of the low sulfur plate (304L). The role of arc shift on the formation of the weld 

pool is examined in this thesis. 

(d) An undercut can be seen on the high sulfur side, while an over-fill can be seen on the 

low sulfur side, indicating a net movement of mass from the high sulfur side to the low 

sulfur side. Comparison of all the experiments shows that the undercut is more severe in 

cases involving 303 SS, which has very high sulfur content. The occurrence of undercut 

can be explained qualitatively by the surface tension driven fluid flow suggested by 

Heiple et al. [ 5]. They [ 5] stated that the plate with lower sulfur content has relatively 

higher surface tension than the one with higher sulfur content. The result is a net surface 

tension gradient across the weld pool leading to surface fluid flow toward the side of the 

plate with less sulfur. This flow pattern should cause the net movement of mass from the 

high sulfur side to the low sulfur side. However, they [ 5] did not experimentally 

determine the flow during welding. They also did not calculate the flow. However, once 

the weld pool is formed, liquid metal in the weld pool circulates vigorously causing 

mixing of sulfur from the two plates. Actual surface tension gradient will depend on the 

sulfur distribution in the weld pool. A proper quantitative understanding of the 

occurrence and extent of undercut is still lacking. The weld pool surface is assumed to be 

flat in the present study for the sake of simplicity. 
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Fig. 6.6. Weld pool geometry when welding a stainless steel plate having low sulfur 
content (0.003 wt%) with a plate having very high sulfur content (0.293 wt%). The white 
line at location ‘A’ indicates the joint of the two plates. Location ‘C’ indicates the point 
of maximum penetration. Line ‘AB’ denotes the shift of the point of maximum 
penetration from the joint of the two plates. The length of line ‘AB’ is called the center 
line shift (CLS). Welding conditions: 100 A, 9.8 V, welding speed is 1.7 mm/s. 
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Fig. 6.7. An experiment to demonstrate the shifting of the arc towards the low sulfur side. 
Looking from the left side of the setup, first a low sulfur plate (304L – 0.003 wt% sulfur) 
on the right was welded to a high sulfur plate (304RL – 0.024 wt% sulfur) on the left. 
After half way the plates were reversed as shown in the figure.    
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Fig. 6.8. The shifting of the arc towards the low sulfur side. The pictures of the arc were 
taken from the left side of the setup shown in Fig. 6.7. The vertical dotted line shows the 
center line of the weld. (a) The arc can be seen shifted towards right, i.e., towards the low 
sulfur side (304L plate). (b) The arc is seen shifted towards left because after halfway the 
low sulfur plate (304L) is kept on the left side as shown in Fig. 6.7. 
   

(b)(a) 
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The reasons for the shifting of the arc are not available in the literature. A possible 

explanation can be the presence of easily ionized metal vapor selectively above the low 

sulfur containing plate. The resulting improvement in the electrical conductivity of the 

arc plasma above the low sulfur plate may lead to arc shift. Dunn and Eagar [ 23] noted 

that the conductivity of arc plasma can be increased several orders of magnitude even by 

very small amounts of easily ionized metal vapors. During welding of alloys, metals 

vaporize from the weld pool surface. Argon is generally used as the shielding gas and 

most metals have ionization potentials significantly lower than that of argon [ 23]. As a 

result, argon plasma contains ionized metal vapors leading to enhanced electrical 

conductivity of the plasma [ 23]. Abbaoui et al. [ 24] calculated the thermal and electrical 

conductivities of argon plasmas containing a variety of metal vapors, and showed that the 

ionization potential of the metal contaminant is the predominant criterion in determining 

the magnitude of the increase in plasma conductivity. Furthermore, the higher the amount 

of ionized metal vapor, the higher is the electrical conductivity of the plasma [ 23].  

The degree of ionization of different metals with temperature is given in Fig. 6.9 

[ 25]. It can be seen that metals such as potassium, sodium and manganese can be easily 

ionized at normal arc temperatures, and would be important in enhancing the 

conductivity of the plasma. When sulfur is present in stainless steel, it has a profound 

influence on the activity of these metals in steel. For example, the activity of manganese 

is given by [ 26]: 

[ ] [ ]Mn wt%fa MnMn =  (6.13) 

where fMn is the activity coefficient of manganese. The expression for fMn is given as 

[ 26]: 

[ ] [ ] [ ] [ ]( )∑++= j
Mn

S
Mn

0
MnMn ej wt%eSulfur wt%flogflog  (6.14) 

where S
Mne is the interaction parameter of Mn with sulfur, j represents other elements in 

the steel and j
Mne is the interaction parameter of Mn with element j. The value of S

Mne is     

-4.3 × 102 [ 26]. A negative value of S
Mne means that with the increase in the sulfur content 

the value of log(fMn) in Eq. (6.14) decreases and as a result the value of activity of 
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manganese given by Eq. (6.13) also decreases. Thus, there will be a lower concentration 

of manganese vapors on the high sulfur side resulting in shifting of the arc towards the 

low sulfur side.  

An important question is how much should the arc be shifted from the joint of the 

two plates? Experimental measurements of arc shift are too difficult to conduct. Some 

guideline about the location of the arc can be obtained from the location of maximum 

weld pool penetration. During welding, the maximum heat is supplied directly below the 

arc and this leads to the maximum penetration at or very near to that location. Therefore, 

the location of maximum penetration is assumed to be the location of the arc axis in the 

present study. The arc shift is quantified by the center line shift (CLS), which is given by 

the length of line AB in Fig. 6.6. Table 6.6 lists the CLS values for all the dissimilar 

sulfur specimens. It can be seen from Table 6.6 that energy input is an important factor 

affecting the CLS. For example, for the same SS combination, the CLS for case 1 having 

higher energy input is higher than that for case 10 having lower energy input. 

Furthermore, a comparison of cases 1 to 3 shows that for approximately the same energy 

input, the difference in the sulfur content of the two plates also affects CLS. It is evident 

from Table 6.6 that the CLS does not depend linearly on the above mentioned factors. A 

three parameter optimization was conducted to get the values of a, b and c in the 

following equation from the experimental data in Table 6.6.  
c

b
RL U

VICCaCLS ⎟
⎠
⎞

⎜
⎝
⎛ ×

×−×=  (6.15) 

The resulting relation between the CLS and the above mentioned factors, i.e., energy 

input and the difference in sulfur contents of the two plates is given as follows: 
42.0

24.0
RL U

VICC0.19CLS ⎟
⎠
⎞

⎜
⎝
⎛ ×

×−×=  (6.16) 

where CLS is the center line shift in mm, CL is the sulfur content of the left plate in wt%, 

CR is the sulfur content of the right plate in wt%, I is current in Amp, V is voltage in 

Volts and U is the welding speed in mm/s. The corresponding plot is shown in Fig. 6.10. 

The symbols represent the experimental data and the line represents a linear fit to the 

experimental data. The linear fit passes through the origin so that the CLS is zero when 
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the two plates have the same sulfur content. Tinkler et al. [ 12] also explored the link 

between sulfur content and CLS. They [ 12] welded several stainless steel tubes 

containing between 15 ppm (1 ppm = 10-4 wt%) and 140 ppm sulfur with standard 

stainless steel tubes containing 15 ppm or 133 ppm sulfur. Their [ 12] results for the 

variation of CLS on welding various stainless steel tubes to low sulfur (15 ppm) standard 

and high sulfur (133 ppm) standard are shown in Fig. 6.11(a) and (b), respectively. All 

the experiments were performed using the same energy input. In their [ 12] experiments, 

the standard tube was kept on the left hand side and the subject tube was kept on the right 

hand side. The x=0 location corresponded to the joint of the two plates. Since the weld 

pool shifts towards the low sulfur side, the CLS values were negative for all the cases 

involving the low sulfur standard, as shown in Fig. 6.11(a), and positive for majority of 

cases involving the high sulfur standard as shown in Fig. 6.11(b). In these figures the 

solid circles represent the results for cases where the two tubes had different sulfur 

contents, while the crosses represent the cases where the two tubes had the same sulfur 

contents. When the two tubes had the same sulfur content, the CLS was almost zero. A 

linear relation was obtained between the CLS and the sulfur content of the subject tubes 

in both Fig. 6.11(a) and (b). However, the data points were mostly clustered at the two 

extremes of the sulfur content range considered in the experiments. Furthermore, Tinkler 

et al. [ 12] did not take into account the effect of energy input, which is an important 

factor influencing the CLS, as can be seen from Table 6.6. The empirical relation given in 

Eq. (6.16) takes into account the effect of both the energy input and the difference in 

sulfur contents of the two plates, and can be readily used to determine the location of the 

arc during welding. 
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Table 6.6. The center line shift (CLS) of all the experimental results for welding of plates 
with different sulfur contents. SS stands for stainless steel. CL is the sulfur concentration 
in wt% in the left piece while CR is the sulfur concentration in wt% in the right piece. The 
value of energy input (J/mm) is given by (Current×Voltage/Welding speed). 

 

Case 
no. 

SS 
(Left) 

SS 
(Right) 

|CL-CR|
(wt% S)

Current
(A) 

Voltage
(V) 

Welding 
speed 

(mm/s) 

Energy 
input 

(J/mm) 

CLS 
(mm) 

1 304L 303 0.293 150 10.5 1.7 926.47 2.44 

2 304RL 303 0.27 150 10.8 1.7 952.94 2.68 

3 304L 304RL 0.023 150 10.5 1.7 926.47 1.77 

4 304L 303 0.293 150 10.8 3.4 476.47 2.16 

5 304RL 303 0.27 150 10.9 3.4 480.88 2.22 

6 304L 304RL 0.023 150 10.7 3.4 472.06 1.32 

7 304L 303 0.293 100 9.8 1.7 576.47 1.88 

8 304RL 303 0.27 100 10.0 1.7 588.24 1.38 

9 304L 304RL 0.023 100 9.9 1.7 582.35 0.8 

10 304L 303 0.293 100 10.2 3.4 300.00 1.51 

11 304RL 303 0.27 100 10.2 3.4 300.00 1.52 

12 304L 304RL 0.023 100 10.0 3.4 294.12 0.8 
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Fig. 6.9. The degree of ionization (logarithmic scale) versus temperature for some gases 
and metal vapors [ 25].  
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Fig. 6.10. Relation between the center line shift (CLS) and the two factors affecting it, 
i.e., absolute value of difference in sulfur content of the two plates and the energy input 
per unit length. The symbols represent the experimentally measured data while the line 
represents the linear fit to the experimental data. The symbol CL is the sulfur content of 
the left plate (wt%), CR is the sulfur content of the right plate (wt%), I is current (A), V is 
voltage (V) and U is the welding speed (mm/s).    
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Fig. 6.11. Variation of center line shift (CLS) with sulfur content when subject tubes 
were welded to: (a) low sulfur standard, i.e., 15 ppm (0.0015 wt%) sulfur, (b) high sulfur 
standard, i.e., 133 ppm (0.0133 wt%) sulfur [ 12]. The solid circles represent the results 
for cases where the two tubes had different sulfur contents. The crosses represent the 
cases where the two tubes had the same sulfur content. Welding conditions: Start current 
– 35 A; Finish current – 26 A; Fixture rotation speed - 4.6 revolutions/min, Outer 
diameter of tubing – 9.5 mm. Unit conversion: 1 ppm = 10-4 wt%.    

(b)

(a)
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Next, the numerical transport phenomena based model developed in the present 

study is used to calculate the evolution of weld pool geometry for all the cases listed in 

Table 6.6. The arc is shifted by a distance equal to the experimentally measured value of 

CLS in each case. The loss of sulfur from the top surface is taken into account through 

Eq. (6.9). The calculated weld pool geometries for cases 1 to 12 listed in Table 6.6 are 

compared with the corresponding experimental micrographs in Fig. 6.12 to Fig. 6.23, 

respectively. In each figure, part (a) shows the experimental weld pool geometry, part (b) 

shows the temperature and velocity fields, where the contours show the temperature in 

degree Kelvin and the vectors show the liquid velocity, and part (c) shows the 

distribution of sulfur in the weld pool, where the contours show the sulfur concentration 

in wt% and the vectors show the liquid velocity. The solid vertical line shows the joint of 

the two plates being welded. The concentration of sulfur in wt% is also marked in the 

base metal on either side of the joint in part (c) of each figure.  
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Fig. 6.12. Results for case 1 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.026 wt%. 
Welding conditions: 150 A, 10.5 V, welding speed is 1.7 mm/s. 
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Fig. 6.13. Results for case 2 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.041 wt%. 
Welding conditions: 150 A, 10.8 V, welding speed is 1.7 mm/s. 
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Fig. 6.14. Results for case 3 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.008 wt%. 
Welding conditions: 150 A, 10.5 V, welding speed is 1.7 mm/s. 
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Fig. 6.15. Results for case 4 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.018 wt%. 
Welding conditions: 150 A, 10.8 V, welding speed is 3.4 mm/s.   
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Fig. 6.16. Results for case 5 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.035 wt%. 
Welding conditions: 150 A, 10.9 V, welding speed is 3.4 mm/s. 
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Fig. 6.17. Results for case 6 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.007 wt%. 
Welding conditions: 150 A, 10.7 V, welding speed is 3.4 mm/s.   
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Fig. 6.18. Results for case 7 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.016 wt%. 
Welding conditions: 100 A, 9.8 V, welding speed is 1.7 mm/s. 
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Fig. 6.19. Results for case 8 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.067 wt%. 
Welding conditions: 100 A, 10.0 V, welding speed is 1.7 mm/s.  
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Fig. 6.20. Results for case 9 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.009 wt%. 
Welding conditions: 100 A, 9.9 V, welding speed is 1.7 mm/s. 
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Fig. 6.21. Results for case 10 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.019 wt%. 
Welding conditions: 100 A, 10.2 V, welding speed is 3.4 mm/s. 
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Fig. 6.22. Results for case 11 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.041 wt%. 
Welding conditions: 100 A, 10.2 V, welding speed is 3.4 mm/s. 
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Fig. 6.23. Results for case 12 in Table 6.6. (a) Experimental weld pool geometry. The 
vertical line shows the joint of the two plates. (b) Calculated temperature and velocity 
fields in the weld pool. The contours represent the temperatures in degree Kelvin and the 
vectors represent the liquid velocity. The 1745 K isotherm is the solidus temperature of 
stainless steel used and marks the weld pool boundary. (c) Calculated concentration of 
sulfur in the weld pool. The contours represent sulfur concentration in wt%. The sulfur 
concentration on the top surface and the bulk of the weld pool was about 0.008 wt%. 
Welding conditions: 100 A, 10.0 V, welding speed is 3.4 mm/s. 
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Parts (c) of Fig. 6.12 to Fig. 6.23 show the following features about sulfur 

distribution in the weld pool. On the surface of the weld pool, significant concentration 

gradient is observed only in small areas near the edges of the weld pool, while in most of 

the central region of the weld pool surface and the bulk of the weld pool the 

concentration gradient is fairly small. This is contrary to the earlier [ 5] belief that when 

two plates having different sulfur contents are welded, a gradient of sulfur concentration 

exists on the top surface from the high sulfur to the low sulfur side, which results is a net 

surface tension gradient across the weld pool top surface leading to surface fluid flow 

toward the low sulfur side. This flow pattern was believed to cause the shifting of the 

weld bead towards the low sulfur side. Of all the results presented in parts (c) of Fig. 6.12 

to Fig. 6.23, only Fig. 6.23(c) seems to follow the flow pattern as per the earlier belief 

[ 5], i.e., the entire liquid is flowing from the high sulfur to the low sulfur side. However, 

a more careful observation reveals that the strong anticlockwise circulation loop at the 

right edge does not span the entire weld pool and there is a small clockwise circulation 

loop at the center of the weld pool. The anticlockwise circulation loop at the right edge is 

caused by the localized concentration gradient at that edge. The concentration gradient in 

the center of the weld pool is still very small. Owing to the low concentration of sulfur in 

the central region of the weld pool top surface, two circulation loops going radially 

outwards are formed in the center. 

To check the validity of the calculated sulfur concentration, Electron Probe 

Micro-Analysis (EPMA) was used to measure the sulfur concentration on the top surface 

of the weld pool in cases 1 to 3 in Table 6.6 corresponding to Fig. 6.12 to Fig. 6.14, 

respectively. Since phosphorus is also present in the specimens, its concentration was 

also measured. However, the following problem was faced while doing EPMA. Even 

though EPMA can provide concentration data for a surface area as small as 1 µm2, such 

high precision could not be used for the present case. This is because stainless steels 

containing high amount of sulfur have a tendency to precipitate out sulfides shown by 

dark spots and discs of manganese-sulfide (MnS) in Fig. 6.24 to Fig. 6.27. Fig. 6.24 

shows the distribution of MnS precipitates in 303 SS (0.293 wt% Sulfur), Fig. 6.25 shows 

the distribution of MnS precipitates in 304RL SS (0.024 wt% Sulfur), Fig. 6.26 shows the 
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distribution of MnS precipitates in 304 L SS ( 0.003 wt% Sulfur) and Fig. 6.27 shows the 

distribution of MnS precipitates in the weld pool for case 2 of Table 6.6 where 304RL SS 

is welded to 303 SS. Fig. 6.27 corresponds to a location in the center of the weld pool. 

For the base metals, Fig. 6.24 to Fig. 6.26 show that the size and density of MnS 

precipitates decreases from 303 SS to 304L SS, which is consistent with the amount of 

sulfur contained by these stainless steels. It is noteworthy that the distribution of MnS 

precipitates in the base metals is not very uniform, which might lead to variations in 

sulfur content measurements in different regions of the base metal when EPMA is used. 

Fig. 6.27 shows that in the weld pool the size and distribution of MnS precipitates is more 

or less uniform, which indicates the absence of any steep sulfur concentration gradient in 

the weld pool. Because of the precipitation of MnS, the matrix has a much lower 

concentration of sulfur than that in the precipitates. Therefore, if EPMA is done at a high 

precision, the data will show random distribution of sulfur, with low concentration in the 

matrix and a high value whenever a MnS precipitate is encountered. In order to avoid this 

problem, EPMA data was averaged over spot sizes of 50×50 µm2. Both the sulfur and 

phosphorus concentrations were measured at each spot in wt%. 
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Fig. 6.24. Distribution of manganese-sulfide (MnS) precipitates (dark spots and discs) in 
303 stainless steel (SS) base metal. 

303 SS Base Metal
(0.293 wt% Sulfur) 

MnS Precipitate 
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Fig. 6.25. Distribution of manganese-sulfide (MnS) precipitates (dark spots and discs) in 
304RL stainless steel (SS) base metal. 

304RL SS Base Metal
(0.024 wt% Sulfur) 

MnS Precipitate 



 199

 

 
 

 

Fig. 6.26. Distribution of manganese-sulfide (MnS) precipitates (dark spots) in 304L 
stainless steel (SS) base metal. 

304L SS Base Metal 
(0.003 wt% Sulfur) 

MnS Precipitate 
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Fig. 6.27. Distribution of manganese-sulfide (MnS) precipitates (dark spots) in the weld 
pool for case 2 of Table 6.6. Welding conditions: 150 A, 10.8 V, welding speed is 1.7 
mm/s. 304RL stainless steel has 0.024 wt% sulfur while 303 stainless steel has 0.293 
wt% sulfur. 

304RL – 303 Weld Metal

MnS Precipitate 
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For each weld, the sulfur and phosphorus concentrations were measured using 

EPMA at the weld pool top surface along the y-direction, as well as along a vertical line 

starting from the top surface of the weld, as shown by the dotted lines in Fig. 6.28. Fig. 

6.29(a), (b) and (c) show the sulfur distribution on the top surface for the welds given in 

cases 1, 2 and 3 of Table 6.6, respectively and Fig. 6.30(a), (b) and (c) show the sulfur 

distribution along the weld pool penetration for the same cases. Fig. 6.31(a), (b) and (c) 

show the phosphorus distribution on the top surface for the welds given in cases 1, 2 and 

3 of Table 6.6, respectively and Fig. 6.32(a), (b) and (c) show the phosphorus distribution 

along the weld pool penetration for the same cases. Fig. 6.29 shows that there is no 

significant concentration gradient of sulfur on the top surface of the welds except very 

close to the edges. This negates the possibility of a concentration gradient induced net 

surface tension gradient that can lead to surface fluid flow toward the low sulfur side. 

Therefore, surface concentration gradient does not play a major role is shifting of the 

weld bead towards the low sulfur side as was believed in earlier studies [ 5]. The shifting 

of the arc towards the low sulfur side turns out to be the main factor governing the weld 

bead shift. Along the vertical direction also there is not much variation in sulfur 

concentration as shown by Fig. 6.30. The calculated results shown in Fig. 6.29 and Fig. 

6.30 are in fair agreement with the experimental measurements indicating the validity of 

the present approach in calculating sulfur distribution in the weld pool on welding two 

plates having different sulfur contents. It is noteworthy that in Fig. 6.29 the measured 

sulfur concentration at several locations in the base metal is either much higher or much 

lower than the average concentration of the stainless steels used in the calculations. This 

discrepancy might be attributed to the non-uniform distribution of manganese sulfide 

precipitates in the base metal. Where the scanned area has less precipitates, the sulfur 

concentration is low and vice versa. Fig. 6.31 and Fig. 6.32 show that the phosphorus 

concentration also does not vary much on the top surface as well as in the bulk of the 

weld pool, which is expected as the phosphorus concentrations of the three stainless 

steels considered in the present study, are almost the same as shown in Table 6.1.  



 202

What causes the absence of any significant sulfur concentration gradient in the 

weld pool when welding two plates having very different sulfur contents? This question 

can be answered on the basis of the sulfur transport in the weld pool driven mainly by 

convection in the weld pool. The relative importance of convection and conduction in the 

overall transport of sulfur in the weld pool is given by the Peclet number for mass 

transfer, Pem, which is determined as: 

D
uLPem =  (6.17) 

where D is the mass diffusivity of sulfur. The exact value of mass diffusivity is not 

available in the literature. An order of magnitude value of the mass diffusivity of sulfur in 

molten stainless steel is given by Luo as [ 27] 1.0×10-8 m2/s. This value of D was used in 

the present study. The value of u for case 1 of Table 6.6 is 0.235 m/s and the value of L is 

0.0012 m. The corresponding value of Pem is calculated to be 2.8×104, which indicates 

that convection is the primary mode of solute transport in the weld pool. High fluid 

velocities, sometimes more that 200 mm/s can be seen in Fig. 6.12 to Fig. 6.23. For 

example, in Fig. 6.12, which corresponds to case 1 in Table 6.6, the length of the weld 

pool is approximately 7 mm and the welding speed is 1.7 mm/s. Therefore, the 

characteristic time for which a location on the top surface remains liquid is approximately 

equal to 4 s. The average fluid velocity on the top surface is more that 100 mm/s at most 

of the locations. Thus, the fluid at a given location on the top surface can cover a distance 

equal to half the length, i.e., 3.5 mm in 0.035 s, and a semicircular loop of diameter 3.5 

mm in 0.05 s. Such a fast moving fluid can circulate through the weld pool more than 50 

times in 4 s, i.e., the time for which any location remains liquid. The fast re-circulating 

flow will ensure rapid mixing of sulfur in the weld pool. The rapid mixing and 

convection dominant solute transport prevents any significant sulfur concentration 

gradient on the weld pool top surface as well as the bulk. Furthermore, the 

aforementioned discussion illustrates that it is necessary to consider convective mass 

transport in order to accurately predict the sulfur concentration distribution in the weld 

pool. 
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Fig. 6.28. The EPMA measurements of sulfur and phosphorus concentrations were done 
along the dotted lines.  
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Fig. 6.29. Experimental and calculated sulfur concentrations along the horizontal dotted 
line shown in Fig. 6.28 for (a) case 1, (b) case 2, and (c) case 3 of Table 6.6. The symbols 
represent the experimental data and the solid line represents the calculated results. 
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Fig. 6.30. Experimental and calculated sulfur concentrations along the vertical dotted line 
shown in Fig. 6.28 for (a) case 1, (b) case 2, and (c) case 3 of Table 6.6. The symbols 
represent the experimental data and the solid line represents the calculated results. 
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Fig. 6.31. Experimentally measured phosphorus concentrations along the horizontal 
dotted line shown in Fig. 6.28 for (a) case 1, (b) case 2, and (c) case 3 of Table 6.6.  
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Fig. 6.32. Experimentally measured phosphorus concentrations along the vertical dotted 
line shown in Fig. 6.28 for (a) case 1, (b) case 2, and (c) case 3 of Table 6.6.  
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Fig. 6.33 shows the variation of weld pool penetration with energy input per unit 

length for the 12 cases listed in Table 6.6. For a given energy input, say 930 J/mm, the 

weld pool penetration for 304RL-303 weld is higher than that for 304L-304RL weld. The 

Peclet number for heat transfer, given by Eq. (6.12), is 17 for 304L-304RL weld and 29 

for 304RL-303 weld for this heat input. Such high values of Peclet number indicate that 

convection is the primary mode of heat transfer in the weld pool and the effect of sulfur 

as a surface active element will be important. The calculated sulfur concentration on the 

top surface of 304RL-303 weld, corresponding to Fig. 6.13(c), is 0.041 wt%. Fig. 6.2 

shows that for 0.041 wt% sulfur, ∂γ/∂T is positive for temperatures lower than 

approximately 2130 K, i.e., entire weld pool top surface in Fig. 6.13(b). Positive ∂γ/∂T 

causes the convection pattern to be radially inwards, as can be seen in Fig. 6.13(b), 

resulting in a deep weld pool. The calculated sulfur concentration on the top surface of 

304L-304RL weld, corresponding to Fig. 6.14(c), is 0.008 wt%. Fig. 6.2 shows that for 

0.008 wt% sulfur, ∂γ/∂T is positive for temperatures lower than 1890 K and negative for 

higher temperatures. Negative ∂γ/∂T results in a radially outward flow making the weld 

pool shallow. Therefore, two circulation loops can be seen in Fig. 6.14(b), the inner 

circulation loop going radially outwards because of negative ∂γ/∂T at high temperatures, 

and the outer circulation loop going radially inwards because of positive ∂γ/∂T at lower 

temperatures near the periphery of the weld. As a result, for an energy input of 930 J/mm, 

the maximum penetration for 304L-304RL weld is 2.27 mm, which is smaller than that 

for 304L-304RL weld, i.e., 2.57 mm.  

  The effect of energy input on weld pool penetration and width can be observed 

from Fig. 6.33 and Fig. 6.34, respectively. It can be seen that for a given stainless steel 

pair, say 304RL-303, the weld pool penetration and width are higher for higher energy 

input, which is consistent with the basic principles of transport phenomena.  

It can be seen that in all the cases from Fig. 6.12 to Fig. 6.23, the calculated weld 

pool geometry is in fair agreement with the corresponding experimental results. This 

shows the validity of the present calculation procedure in predicting the weld pool 

geometry on welding plates with different sulfur contents. Furthermore, the calculations 

need to incorporate the effect of both the sulfur distribution in the weld pool and the 
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shifting of the arc on the weld pool geometry on joining plates with different sulfur 

contents.  
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Fig. 6.33. Variation of weld pool penetration with energy input per unit length for 12 
cases given in Table 6.6. The three stainless steel combinations welded together are: 
304L welded to 303, 304RL welded to 303, and 304L welded to 304RL. The sulfur 
contents of the three kinds of stainless steels used are: 304L (0.003 wt%), 304RL (0.024 
wt%) and 303 (0.293 wt%).  
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Fig. 6.34. Variation of weld pool width with energy input per unit length for 12 cases 
given in Table 6.6. The three stainless steel combinations welded together are: 304L 
welded to 303, 304RL welded to 303, and 304L welded to 304RL. The sulfur contents of 
the three kinds of stainless steels used are: 304L (0.003 wt%), 304RL (0.024 wt%) and 
303 (0.293 wt%). 
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6.4 Summary and Conclusions 
A numerical transport phenomena based model has been developed to calculate 

the solute distribution in the weld pool. The model was applied to calculate the sulfur 

distribution within the weld pool and the evolution of weld pool geometry.  

(a) The calculated results for the cases where the two plates had the same sulfur 

content were in good agreement with the corresponding experimental results. A high 

value of Peclet number was observed, which indicated that convection is the primary 

mode of heat transport within the weld pool. High sulfur content lead to a positive value 

of temperature coefficient of surface tension, ∂γ/∂T, resulting in radially inward fluid 

flow in the weld pool, and enhanced weld pool penetration. In contrast, for steels with 

very low sulfur content the value of ∂γ/∂T was negative resulting in radially outward 

fluid flow and a shallow and wide weld pool. 

 (b) When two plates having different sulfur contents were welded, the weld pool 

shifted towards the low sulfur side. Two possible factors, which might contribute to the 

weld pool shift, were investigated, i.e., shifting of the arc towards the low sulfur side and 

the gradient of sulfur concentration on the weld pool top surface. It was found that due to 

the dominant role of convection in solute transport in the weld pool, there was no 

significant gradient of sulfur concentration on the top surface except very close to the 

edges. This observation was validated by sulfur concentration measurements using 

EPMA. Thus, the shifting of the arc towards the low sulfur side was identified as the 

main factor governing the shifting of the weld pool. 

(c) The effect of arc shift on the heat and solute transport has been considered for 

the first time in the present study, and consequently the major shift in the weld pool could 

be explained. The amount of arc shift was approximated by the center line shift (CLS), 

i.e., the distance by which the maximum weld pool penetration was shifted from the plate 

joint. The CLS was found to be a function of the difference in the sulfur content of the 

two plates and the energy input.  

(d) It was observed that on welding plates with different sulfur contents, sulfur 

distribution in the weld pool is not the only factor governing the weld pool penetration. 

The change in heat distribution on the top surface due to the shifting of the arc was 
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proposed as a competing factor versus sulfur concentration in determining the weld pool 

penetration.  

(e) The weld pool penetration and width increased with the increase in energy 

input.  

(f) The calculated weld pool geometry and the sulfur concentration in the weld 

pool were in fair agreement with the corresponding experimental results for welding of 

plates having different sulfur contents, indicating the validity of the present approach.  
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Chapter 7 
 

Probing Liquation Cracking Through Modeling of Momentum, Heat and 
Solute Transport during Gas Metal Arc Welding of Aluminum Alloys 

 

Liquation cracking, also known as heat-affected zone (HAZ) cracking, is a 

common problem in the gas metal arc (GMA) welding of aluminum alloys. It occurs in 

the HAZ when low melting point region, i.e., partially melted zone (PMZ), is formed 

during welding. Cracks form when the PMZ cannot withstand the tensile stresses 

generated during solidification [ 1]. The occurrence of liquation cracking in aluminum 

alloys have been confirmed by experiments [ 1- 11]. Huang and Kou [ 1] found that the 

partially molten zone (PMZ) becomes prone to liquation cracking when the solid fraction 

in the PMZ becomes lower than that in the aluminum alloy weld metal. They [ 1] argued 

that lower solid fraction in the PMZ makes this region weaker than the weld metal, 

making the PMZ vulnerable to liquation cracking. The solid fraction of the solidifying 

weld metal is decided by the solute distribution in the weld pool. Therefore, accurate 

predictions of liquation cracking susceptibility in aluminum-copper alloys require 

thorough investigations of non-equilibrium solute distribution during GMA welding. 

Composition of the weld metal results from the mixing of the base metal with the 

filler metal. Solutes are distributed within the weld pool by convection and diffusion.  

Furthermore, both the thermodynamics and the kinetics of solidification affect the solute 

partitioning during solidification. Both the partitioning of the solute and the mixing of the 

filler metal with the base metal need to be considered to understand the solute distribution 

in the weld. However, many previous attempts to understand weld pool solidification 

considered thermal field alone [ 12, 13] and ignored the convective solute transport in the 

weld pool. Chakraborty and Dutta [ 14] developed a solidification model for studying heat 

and mass transfer in a single-pass laser surface alloying process. However, they [ 14] 

assumed equilibrium at the solid-liquid interface that may not be attained when the 

interface speed is comparable with or faster than the diffusion speed. Both the velocity of 

solidification front and the undercooling must be considered to accurately represent 

solidification during welding. The complex coupling of momentum, heat and solute 
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transport under non-equilibrium conditions during fusion welding have not been 

investigated. Such an approach is desirable for accurate prediction of the evolution of 

solute distribution in the weld.  

In the present study, the transport phenomena based model developed in Chapter 

3 has been adapted to the gas metal arc (GMA) welding process, by considering heat and 

solute intake due to filler metal addition, and integrating a non-equilibrium solidification 

model. An effective partition coefficient that considers the local interface velocity and the 

undercooling is used to simulate solidification during welding. The calculations show that 

convection plays a dominant role in the solute transport inside the weld pool. The 

predicted weld metal solute content agrees well with the independent experimental 

observations. The model provides non-equilibrium solute distribution in the solidifying 

weld metal, which is used for the design of consumables to avoid liquation cracking, 

during GMA welding of Al-Cu alloys, using filler metals with different copper contents.  

 

7.1 Mathematical model 
 The numerical transport phenomena based model, developed in the present study, 

has been described in Chapter 3. In the present chapter, we will discuss the modifications 

and additions to this model to adapt it to the gas metal arc (GMA) welding process. 

During the GMA welding process the filler metal melts and mixes with the molten base 

metal by convection and diffusion, adding both heat and solute to the molten pool. As the 

heat source moves, solidification of the molten zone leads to solute rejection in the weld 

pool and formation of solidified weld metal structure. Furthermore, the base metal melts 

and mixes with the molten pool, contributing to its solute content. All these factors have 

been incorporated in the model. 

 The following major assumptions are made in the model:  

(i) Momentum transfer into the molten pool due to filler material addition is 

neglected for simplicity. 

(ii) Also, for simplicity, a pseudo-binary equivalent of the multi-component alloy is 

considered for solidification modeling. 

 



 218

7.1.1 Thermal energy conservation equation 
For modeling the GMA welding process, the modified thermal energy 

conservation equation is given as: 
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where K is the thermal conductivity, and ∆H is the latent enthalpy content of the 

computational cell under consideration given by the following expression:   
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where Ts and Tl are the solidus and liquidus temperatures, respectively. In Eq. (7.1), the 

term Sd represents a volumetric heat source term due to the addition of hot metal droplets 

from the melting filler metal. Calculation of this term will be described in a following 

section. 

 
7.1.2 Solute conservation equation 

The general form of species conservation equation is given by: 
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where C is the solute concentration and D is the effective mass diffusivity of the solute.  

The variable C embodies components from both solid and liquid phases. Voller et al. [ 15] 

have shown that Eq. (7.3) may be rewritten in terms of liquid phase concentration, Cl, and 

non-equilibrium partition coefficient.  Following their approach and neglecting diffusion 

in solid, Eq. (7.3) may be rewritten as [ 15]:   
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where kp is the partition coefficient. In Eq. (7.4), Dl is an effective diffusion coefficient, 

which will be described in a subsequent section, f denotes the appropriate phase fraction 

with subscripts l and s referring to liquid and solid phases, respectively, and Sm is a time-
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averaged volumetric mass source term to incorporate the filler metal addition. The 

calculation of Sm is discussed in the next section. 

Since the solute partitioning at the solid-liquid interface may not reach 

thermodynamic equilibrium, calculations of fs and fl and the prescription of an 

appropriate partition coefficient in Eq. (7.4) requires a rigorous non-equilibrium 

solidification model. Equation (7.4) also indicates a strong coupling between the thermal, 

solutal and velocity fields. A key factor in this coupling is the appropriate modeling of 

the liquid fraction that affects the orientation and location of the pool boundaries. The 

iterative updating of liquid fraction (or, equivalently, nodal enthalpy) is done in the entire 

concentration field, since the enthalpy and concentration fields are coupled through the 

non-equilibrium solidification kinetics at the interface.  

 
7.1.3 Filler metal addition 

Filler metal addition to the weld pool is considered by incorporating time-

averaged volumetric heat and mass sources in the enthalpy and solute conservation 

equations. The volumetric heat source is described in detail in Chapter 2, Section 2.2.1.1. 

The volumetric heat source is characterized by its radius (Rv), height (d) and power 

density (Sv) and considers the interaction between metal droplets and weld pool for 

various welding conditions [ 16, 17]. The radius of the volumetric heat source is assumed 

to be 2.7 times the droplet radius [ 18], and the height (d) is calculated from the following 

equation based on energy balance: 

dvv Dxhd +−=  (7.5) 

where hv is the estimated height of cavity by the impact of metal droplets, xv is the 

distance traveled by the center of the slug between the impingement of two successive 

droplets, and Dd is the droplet diameter. The total sensible heat input from the metal 

droplets, Qt, is given as: 

df
2
wt HwrQ ρπ=  (7.6) 

where ρ is the density, rw is the radius of the wire, wf is the wire feeding rate, and Hd is 

the total enthalpy of the droplets. It should be noted that a portion of Qt is used to heat the 
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additional metal from the droplets up to liquidus temperature. Therefore, the effective 

heat of droplets (Qd) carried into the weld pool is given as:  

( )ldplf
2
wd TTCwrQ −ρπ=  (7.7) 

where Cpl is the specific heat of the liquid metal, Td is the droplet temperature, and Tl is 

the liquidus temperature. 

The values of hv and xv in Eq. (7.5) are calculated based on energy balance as: 
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where γ is the surface tension of the molten metal, g is the acceleration due to gravity, vd 

is the droplet impingement velocity and ∆t is the interval between two successive drops 

(∆t = 1/f, where f is the droplet transfer frequency). As shown in Eqs. (7.5) to (7.9), the 

calculation of the dimensions of the volumetric heat source requires the knowledge of the 

droplet transfer frequency, radius and impingement velocity. These parameters are 

determined from the correlations available in the literature [ 16]. From the computed 

values of Qd, Dd and d, the time-averaged power density for grid points within the 

volumetric heat source, Sd, is calculated as: 

dD
Q

S 2
d

d
d π
=   (7.10) 

Solute addition from the filler metal is considered by incorporating a time-

averaged volumetric mass source term, Sm, in the solute conservation equation, Eq. (7.4). 

The dimensions of the volumetric mass source are assumed to be the same as the 

volumetric heat source. The net mass of solute from the metal droplets, Qt, is given as: 

( )CCwrQ ff
2
wt −ρπ=  (7.11) 

where ρ is the density, rw is the radius of the wire, wf is the wire feeding rate, Cf is the 

concentration of solute in the filler metal drops, and C is the local solute concentration. 
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The time-averaged volumetric mass source, Sm, for grid points within the mass source 

region is given by: 

dD
Q

S 2
d

t
m π
=  (7.12) 

 
7.1.4 Thermo-solutal-flow coupling - enthalpy updating  

The following iterative enthalpy updating scheme proposed by Brent et al. [ 19] is 

chosen in the present study for its adaptability in a fixed-grid enthalpy based framework: 

[ ] [ ] { } { }[ ]nP
1

nP0
P

P
nP1+nP HFh 

a
aHH ∆−λ+∆=∆ −  (7.13) 

where Pa  and 0
Pa  are the coefficients of enthalpy for the nodal point P in the discretized 

energy equation for the current and the previous time steps [ 20], respectively, ∆HP is the 

latent heat content and hP is the sensible enthalpy associated with the nodal point P, n is 

the number of iterations, λ is a relaxation factor, and F-1 is a suitable function that relates 

local enthalpy with temperature and liquid fraction. In order to include the appropriate 

thermo-solutal effects [ 21] in F-1, the interfacial temperature, T, is represented as a 

function of local liquidus composition, Cl, as [ 22]:   

κΓ−β−+= 0lLm /VCmTT  (7.14) 

where Tm is the melting point of the solvent, mL is the non-equilibrium liquidus-line 

slope described by Eq. (7.15), V is the normal interface velocity, β0 is a kinetic 

coefficient of interface motion, Γ is a capillary constant calculated as ργ=Γ L/Tm , γ is 

the surface tension, L is the latent heat of freezing, ρ is the density, and κ is the mean 

curvature of the solid-liquid interface. Equation (7.14) represents a deviation of the 

interfacial temperature from its local equilibrium value due to motion of the interface, the 

local interfacial curvature-undercooling effect and the non-equilibrium partitioning of the 

solute. The partitioning effect is considered by relating the non-equilibrium liquidus-line 

slope (mL) in Eq. (7.14) with its equilibrium value ( *
Lm ) as [ 22, 23]: 
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where kP is the modified partition coefficient that can be expressed in terms of 

equilibrium partition coefficient, kp
*, as [ 22]:  
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In Eq. (7.16), L
DV  is the diffusive speed in the liquid, which can be calculated as [ 22]: 

5.0L
D

*
l

L
D )/D(V τ=  (7.17) 

where L
Dτ  refers to the time of diffusional relaxation of collective atoms (molecules, 

particles) to their equilibrium state in a local volume of alloy [ 22]. The diffusive speed at 

which a solute atom diffuses through the interfacial region can be approximated by the 

ratio of diffusivity of the solute atoms at the interface and a length scale characterizing 

the interface width. Furthermore, the interface velocity (V) in Eq. (7.16) can be 

calculated in an iterative manner using the following equation [ 12]: 

Lf
GkGkV

l

llSS −
=  (7.18) 

where GS and Gl are the temperature gradients in solid and mushy zone at the mushy 

zone/solid interface, respectively, kS and kl are thermal conductivities of the solid and 

liquid phases, respectively, fl is the liquid fraction, and L is the latent heat of freezing. 

For a known interface velocity, the diffusion coefficient appearing in Eq. (7.4) can be 

prescribed as [ 22]: 
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where *
lD  is the diffusion coefficient in the liquid under the conditions of interfacial 

equilibrium.              

The impact of high solidification rate on local interfacial temperature, as indicated 

by Eqs. (7.15) and (7.16) is worth examining at this point. From Fig. 7.1, it can be 

observed that the difference between solidus and liquidus compositions progressively 
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diminishes with increase of interface velocity due to lack of time available for atomistic 

rearrangements. Ultimately, as the interface velocity approaches the diffusive speed, the 

partition coefficient tends to unity. The resulting effect on solidus and liquidus line slopes 

is depicted in Fig. 7.2. It can be observed from this figure that with an increase in the 

interface speed, the difference between the liquidus and solidus line slopes decreases 

rapidly. Thus, the effective solidification range becomes progressively smaller at faster 

solidification rates. The solidus and liquidus temperatures tend to coincide as the 

diffusive speed limit is approached. The mushy zone virtually disappears and the liquid 

instantaneously freezes to form solid crystals without passing through a freezing range. 

At high solidification rates, the solid fraction cannot be calculated based on equilibrium 

considerations. 

Equations (7.15) to (7.18) can be effectively used to complete the iteration cycle 

involving updating of enthalpy using Eq. (7.13). The calculations require an appropriate 

functional relation between liquid composition, Cl, and liquid fraction, fl, consistent with 

the local solute balance: 

lsssl dC)f1(df)CC( −=−  (7.20) 

where fs is the mass fraction of the solid and Cs is the solid phase composition. Replacing 

fs by (1-fl) in Eq. (7.20), where fl is the mass fraction of the liquid, and integrating, fl is 

obtained as: 
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where kp, which replaces Cs/Cl, is a convection-corrected partition-coefficient 

representing the non-equilibrium effects (given by Eq. (7.16)). Equation (7.21) can be 

integrated if the variation of kp with Cl is known.  
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Fig. 7.1. Effect of interface speed on local interfacial partitioning. 
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Fig. 7.2. Effect of interface speed on solidus and liquidus line slopes (an equilibrium 
liquidus slope of -3.37 K/wt%, and an equilibrium partition coefficient of 0.16 were 
chosen for this specific demonstration). 
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For the specific case of a composition independent partition coefficient, integration of Eq. 

(7.21) gives [ 24]: 
1k

l0l
pf CC −=  (7.22) 

where C0 is the initial composition of liquid. Although Eq. (7.22) appears similar in form 

to the well-known Scheil’s equation [ 24], a key difference lies in the fact that the 

partition coefficient in Eq. (7.22) is a strong function of the interface growth rate 

governed by Eq. (7.18) and not a constant. 

With the aid of Eqs. (7.14) and (7.22), a final form of the enthalpy updating 

function appearing in Eq. (7.13) can now be obtained as: 
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Finally, the liquid fraction is calculated by using Eq. (7.13) as: 

L
Hfl

∆
=  (7.24) 

Possible unrealistic intermediate estimates predicted by Eq. (7.24) during iterations can 

be avoided by imposing the following constraints: 

1fif1
0fif0f

l

ll

>=
<=

 (7.25) 

 

Steps of enthalpy updating include: 

Step 1: Initialize the velocity, temperature, concentration and liquid fraction field. 

Step 2: Form coefficients of the discretization equations for fluid flow, heat transfer and 

mass transfer, and solve the resultant system of linear algebraic equations. 

Step 3: Calculate the ratio of interface speed to diffusive speed (using Eqs. (7.17) and 

(7.18)). 

Step 4: Calculate the non-equilibrium partition coefficient at nodal points (using Eq. 

(7.16)). 

Step 5: Calculate the non-equilibrium liquidus slope (using Eq. (7.15)). 
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Step 6: Update nodal latent enthalpy, and hence liquid fraction, as per Eqs. (7.13) and 

(7.24), respectively. This step leads to a corrected weld pool geometry based on the phase 

fraction evolution through appropriate non-equilibrium thermo-solutal coupling. 

Step 7: Go back to Step 2, and iterate until convergence. 

 
7.1.5 Boundary conditions 

The temperature and velocity boundary conditions have been described in Chapter 

3 and are not repeated here. The boundary conditions for solute transport at the 

solidification interface needs to consider non-equilibrium partitioning of solute at the 

solidification front: 

P

w
l k

C
C =  (7.26) 

where Cl is the local solute concentration in the liquid and Cw is the solute concentration 

in the solidified weld metal. Similarly, the boundary condition at the melting front can be 

written as: 

bl CC =  (7.27) 

where Cb is the concentration of the solute in the base metal.   

 
7.2 Results and Discussion 

GMA welding of 2219 aluminum-copper alloy containing 6.3 wt% Cu was 

simulated. The filler metal compositions varied from 0.08 wt% Cu to 9.0 wt% Cu. The 

data used in the calculations are summarized in Table 7.1. Fig. 7.3 shows the computed 

velocity and temperature fields in the weld pool of 2219 alloy with the filler metal 

composition of 0.08 wt% Cu. The weld pool is wide and shallow because the aluminum 

alloy has a negative temperature coefficient of surface tension (dγ/dT), which causes the 

liquid metal to move from the middle to the periphery on the weld pool surface. The 

relative importance of convection and conduction in the overall transport of heat in the 

weld pool can be assessed from the value of the Peclet number, Peh, which is given by: 
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k
LCuPe P

h
ρ

=  (7.28) 

where u is the velocity, ρ is the density, CP is the specific heat at constant pressure, L is 

the characteristic length, and k is the thermal conductivity of the melt. When Peh is large, 

which in physical terms means large melt velocity, large weld-pool, and poor thermal 

conductivity, heat is transported primarily by convection. In the aluminum alloy welds, 

typical velocity in the pool is 0.2 m/s, density is 2400 kg/m3, specific heat is 1060 J/kg-K, 

characteristic length is 0.0044 m, and thermal conductivity is 192 W/m-K. The 

corresponding value of Peh is found to be 12, which is much larger than unity. This value 

of Peh indicates that heat is transported mainly by convection in the weld pool. Therefore, 

accurate calculations of temperature field can only be done by considering convective 

heat transport. 

 
Table 7.1. Data used in the calculations [ 25].  

 
Problem data/physical property Value 

Arc current (amp) 140 

Arc voltage (volt) 22 

Welding speed (m s-1) 4.2 × 10-3 

Wire feeding rate (m s-1) 9.31 × 10-2 

Density (kg m-3) 2400 

Viscosity of liquid (kg m-1s-1) 0.3 × 10-3 

Specific heat (J kg-1K-1) 1.06 × 103 

Mass diffusivity of copper in liquid aluminum (m2 s-1) under 

interfacial equilibrium conditions 
3.0×10-9 

Thermal conductivity (W m-1 K-1) 192 

Equilibrium partition coefficient 0.16 

Equilibrium slope of liquidus line (K/wt%) -3.37  

Solidus temperature of alloy 2219 (K) 821 

Liquidus temperature of alloy 2219 (K) 911 
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Fig. 7.3. Velocity and temperature fields in the weld pool for the welding conditions 
indicated in Table 7.1. The filler metal composition was 0.08 wt% copper. All the 
temperatures are in degree Kelvin. 
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The Peclet number for mass transfer, Pem, indicates the relative importance of 

convection and conduction in the overall transport of solute in the weld pool. 

D
uLPem =  (7.29) 

where D is the mass diffusivity. The mass diffusivity of aluminum alloy is 3.0×10-9 m2/s. 

The corresponding value of Pem is calculated to be 2.9×105, which indicates that 

convection is the primary mode of mass transport in the weld pool. Therefore, it is 

necessary to consider convective mass transport in order to accurately predict the solute 

concentration distribution in the weld pool. 

Fig. 7.4(a) to (d) show the computed solute concentration distributions within the 

weld pool for four filler metal compositions: 0.08 wt% Cu, 2.0 wt% Cu, 4.0 wt% Cu, and 

9.0 wt% Cu. It can be observed that convection plays a dominant role in solute 

distribution in the weld pool causing efficient mixing of the base metal with the filler 

metal. At the melting front, in front of the pool, the base metal melts and forms a liquid 

of the same composition. The filler metal then mixes with the liquid from the base metal 

resulting in a weld metal composition that lies between the filler metal and the base metal 

compositions. At the solidification front, the solute is rejected from the solidified material 

into the molten pool. As a result, high solute concentration is observed at the 

solidification front in Fig. 7.4(a) to (d). Similarly, in the transverse sections ahead of the 

heat source, the composition near the melting front is same as that of the base metal.  

However, in transverse sections behind the heat source, segregation of the solute is 

observed near the solidification front.  In the middle of the weld pool, a large amount of 

filler metal is added and the solute concentration is fairly close to the filler metal 

composition. It is noteworthy that the high solute content at the solidification front does 

not have as much influence on the overall concentration distribution as the mixing of the 

filler metal with the base metal. This behavior can be attributed to very low mass 

diffusivity of copper in the alloy and very low liquid velocities in the two phase region 

adjacent to the solidification front. The rejected solute is confined to a very small region 

and the low velocities in the two phase region prevent rapid mixing of the rejected solute 

into the weld pool. It should also be noted that the high solute value depicted in Fig. 
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7.4(a) to (d) at the rear end of the pool is not observed in real welds. In real welds, 

because of local redistribution of the solute at the microscopic level, the concentration 

gradient at the rear end is much less steep. The high solute content value observed in Fig. 

7.4(a) to (d) is an artifact of the calculation because of the simplified local equilibrium 

boundary condition assumption given in Eq. (7.26). However, this assumption would not 

affect the overall calculation of solute distribution in the weld because the rejected solute 

is confined to a very small region as mentioned above. 

Since the composition of a single-pass GMA aluminum weld is essentially 

uniform [ 1], the solidified weld metal solute concentration was assumed to be equal to 

the average concentration of the solute in the molten weld pool. As shown in Fig. 7.4, the 

concentration of solute in the solidified weld metal depends on the filler metal 

composition. The accuracy of the calculated weld metal composition can be examined by 

comparing the computed weld metal composition for 0.08 wt% filler metal addition with 

the corresponding independent experimental result of Huang and Kou [ 1]. For a GMA 

weld of 2219 alloy using a filler metal containing 0.08 wt% copper, Huang and Kou [ 1] 

measured the weld metal composition to be 3.43 wt% copper. For the same welding 

conditions, the computed weld metal composition was equal to 3.17 wt% copper as 

shown in Fig. 7.4(a), thus confirming the accuracy of the calculations. The results also 

indicate the importance of solute transport by convection.  Accurate solute concentration 

distribution cannot be calculated by considering only the diffusive transport. 
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Fig. 7.4. Concentration field (wt% Cu) in the weld pool. The filler metal compositions 
were (a) 0.08 wt% Cu, (b) 2.0 wt% Cu, (c) 4.0 wt% Cu, and (d) 9.0 wt% Cu. 

(a) (b)

(c) (d)
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Gittos and Scott  26] proposed that liquation cracking occurs when the base metal 

solidus temperature is below the weld-metal solidus temperature. In other words, if the 

base metal solute content is higher than that of the weld metal, then the PMZ is 

susceptible to liquation cracking. Fig. 7.5 is a plot of the computed wt% Cu in the weld 

metal versus the wt% Cu in the filler metal. The concentration of Cu in the base metal 

was 6.3 wt%. Thus, based on the criterion proposed by Gittos and Scott  26], the PMZ 

becomes susceptible to liquation cracking when the weld metal concentration is lower 

than 6.3 wt% Cu. However, Huang and Kou [ 1] argued that the cooling rate during 

welding may be too high for equilibrium solidification to occur, and solidification can 

continue far below the equilibrium solidus temperature. They [ 1] proposed the criterion 

that the PMZ becomes prone to liquation cracking when the solid fraction in the PMZ 

becomes lower than that of the weld metal. A weaker PMZ with lower solid fraction 

makes this region vulnerable to liquation cracking. Calculation of the solid fraction in the 

solidifying region requires the computed values of non-equilibrium partition coefficient, 

which is shown in Fig. 7.6. It should be noted that the value of the non-equilibrium 

partition coefficient is higher than that of the equilibrium value. The higher value is 

consistent with the shrinking of the two phase region at high solidification rates. Once kp
* 

and kp were obtained for each temperature, Eq. (7.15) was used to get the slope of the 

liquidus line (ml) at these temperatures. Next, the modified liquidus composition (Cl) at 

each temperature was calculated using kp, ml, and the melting point of pure aluminum, 

933 K. The corresponding values of the modified solidus compositions, Cs, at each 

temperature could be obtained from the values of kp and Cl at these temperatures. The 

modified Cs and Cl were then used to calculate the non-equilibrium solid fractions. The 

computed solid fraction for the 2219 alloy, having 6.3 wt% Cu taking into account the 

non-equilibrium solidification is shown in Fig. 7.7.  The solid line curve in Fig. 7.7 was 

calculated from the equilibrium phase diagram using the equilibrium Cs and Cl values.  

The non-equilibrium solid fraction is lower than the corresponding equilibrium value 

because of undercooling, which prevents solidification to occur at equilibrium 

temperature at high solidification rates.   
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Fig. 7.5. The concentration of copper in the weld metal for different filler metal 
compositions. The concentration of copper in the base metal was 6.3 wt%.  The safe and 
susceptible regions are indicated for equilibrium solidification. 
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Fig. 7.6. Variation of equilibrium partition coefficient (kp*) (dotted line) and non-
equilibrium partition coefficient (kp) (solid line) with temperature. 
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Fig. 7.7. Solid fraction versus temperature for alloy composition of 6.3 wt% copper. The 
solid line curve was obtained from the equilibrium phase diagram and the dotted line 
curve was obtained using the modified non-equilibrium solidus and liquidus lines. 
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 The variation of non-equilibrium solid fraction with temperature for three cases 

has been plotted in Fig. 7.8. One plot is for the base metal or the PMZ composition, i.e., 

6.3 wt% Cu, and the other two are for the solidifying weld metal compositions in the 

mushy region computed from the solute transport model for two welding conditions. The 

lower plot represents welding of 2219 alloy using a filler metal with 9.0 wt% Cu that 

leads to a mushy zone composition of 8.91 wt% Cu for the wire feeding rate and other 

parameters indicated in Table 7.1. Similarly, the upper plot indicates the use of a filler 

metal of 2.0 wt% Cu, for the same welding conditions, that leads to a mushy zone 

composition of 2.16 wt% Cu. The solid fraction in the PMZ can be compared with that in 

the solidifying region, i.e., the mushy zone. The lower graph, representing 9.0 wt% Cu 

containing filler metal, has lower solid fraction in the mushy zone than that in the PMZ. 

Therefore, the solidifying weld metal has lower strength than the PMZ and the PMZ is 

not susceptible to liquation cracking. In contrast, when the 2.0 wt% Cu containing filler 

metal is used, the solid fraction in the solidifying weld metal is higher than that in the 

PMZ. Consequently, the solidifying weld metal is stronger than the PMZ making the 

PMZ susceptible to liquation cracking. The above observations are in agreement with the 

independent experimental observations of Huang and Kou [ 1]. Thus, the present 

calculations considering convective solute transport, non-equilibrium solidification and 

filler metal addition can be used to predict liquation cracking susceptibility in aluminum 

alloy welds. 
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Fig. 7.8. Solid fraction versus temperature calculated using modified non-equilibrium 
solidus and liquidus lines for different alloy compositions. The PMZ composition was 6.3 
wt% Cu (dash-dot line in the center). The calculated mushy zone compositions, or the 
solidifying weld metal compositions, of 2.16 wt% Cu (dotted line above the central line) 
and 8.91 wt% Cu (solid line below the central line) correspond to the filler metal 
compositions of 2.0 wt% Cu and 9.0 wt% Cu, respectively. 
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7.3 Summary and Conclusions 
A numerical model that considers momentum, heat and solute transport has been 

developed to calculate non-equilibrium solute distribution in gas metal arc (GMA) welds. 

The model uses an effective partition coefficient that considers both the local interface 

velocity and the undercooling to simulate non-equilibrium solidification during welding. 

The computed concentration profiles reflect the dissolution of the base metal at the 

melting front, the strong convection in the weld pool, mixing of the filler metal with the 

base metal and solute rejection at the solidifying interface. The calculations showed that 

convection plays a dominant role in solute transport in the weld pool and diffusion 

calculations alone are insufficient. The predicted weld metal solute content agreed well 

with the independent experimental observations. Using the computed average 

composition in the two phase mushy region, the solid fraction in the solidifying weld 

metal was compared with that in the PMZ for various filler metal compositions.  In each 

case, the susceptibility of liquation cracking was determined by Huang and Kou’s 

criterion, i.e., by comparing the solid fraction in the solidifying weld metal with the 

corresponding value in the PMZ. The model predictions of liquation cracking 

susceptibility in Al-Cu alloy weldments were confirmed by independent experiments for 

various filler metal compositions.  
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Chapter 8 
 

Concluding Remarks 
 

8.1 Summary 
The following problems were addressed in this thesis. 

 1. Most of the previous work on the applications of numerical transport 

phenomena to fusion welding was focused on heat transfer and fluid flow. In contrast, the 

focus of the present thesis is on mass transport during welding where the mixing of the 

solutes in weld consumables and base metal is studied. A three-dimensional numerical 

heat, momentum and solute transport model is developed to calculate the temperature and 

velocity fields and solute distribution in the welds. 

 2. The lack of reliability of the output of the numerical heat, momentum and 

solute transport models originates from the uncertainty in the values of some of the input 

parameters such as arc efficiency, arc radius, arc power distribution factor, and effective 

thermal conductivity and effective viscosity of the liquid metal. A methodology has been 

developed and tested to improve the reliability of output of the numerical transport 

phenomena based model by combining it with a real number based genetic algorithm and 

a limited volume of experimental data to estimate the values of the five uncertain input 

parameters. 

 3. Numerical transport phenomena based models are computationally intensive 

and require considerable computer time often of the order of 10 to 30 min for a single 

run. Many computational procedures require repetitive runs of these models. In order to 

expedite the calculation, a neural network was trained with the data from the numerical 

heat, momentum and solute transport model. The resulting neural network had the 

predictive power of the three-dimensional numerical transport phenomena based model 

but could do the calculations in less than a second. 

 4. In many real world situations it is desirable to know the input process 

parameters to obtain a specific output. For example, during welding it would be very 

useful if some computational procedure could predict the input parameters such as arc 

current, voltage and welding speed to obtain a specific weld attribute such as weld pool 
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geometry. The numerical transport phenomena based models lack this bi-directional 

capability. A methodology has been developed and tested in the present study to tailor 

fusion weld geometry by combining the neural  network, having the predictive power of 

the numerical transport phenomena based model, with genetic algorithm. 

 5. The numerical heat, momentum and solute transport calculations were applied 

to two examples, (a) understanding mixing of consumables with base metal during gas 

metal arc (GMA) welding of aluminum-copper alloys so that liquation cracking could be 

predicted, and (b) improved understanding of the role of surface active elements such as 

sulfur where two plates having different concentrations of sulfur are joined using gas 

tungsten arc (GTA) welding. 

 

8.2 Conclusions 
 

 The following are some of the important conclusions of the present thesis 

research. 

 1. The reliability of output of the numerical heat, momentum and solute transport 

model was improved by finding optimized values of uncertain input parameters. (a) The 

optimized values of the uncertain input parameters lie within the ranges of their values 

reported in the literature. (b) The computed weld pool shape and size utilizing the 

optimized values of the uncertain input parameters agreed well with the corresponding 

experimentally determined values for various welding conditions indicating the 

effectiveness of the approach. (c) Although the procedure to determine the values of the 

uncertain input parameters is computationally intensive, taking about 3 days in a 2.8 GHz 

Pentium 4 PC, the recent improvements in computational hardware and software have 

made the calculations tractable. 

2. Six neural networks, trained by data generated from the numerical heat, 

momentum and solute transport model were developed for the GTA welding of stainless 

steel to improve computational efficiency. (a) Each neural network takes 17 input 

variables, which include welding process parameters and important material properties, 

and provides one output variable. The output variables include depth, width and length of 
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the weld pool, peak temperature, cooling time from 800°C to 500°C and maximum liquid 

velocity in the weld pool. (b) A hybrid optimization scheme, including a gradient descent 

method and a genetic algorithm, was used to train the networks. The hybrid approach 

gave lower errors than only the gradient descent method. (c) The results provided by the 

neural networks agreed well with the corresponding results obtained from the numerical 

transport phenomena based model, indicating the accuracy of its predictions. (d) 

Although, significant amount of time was spent in making a number of runs of the 

numerical transport phenomena based model to generate the data for training the neural 

networks, the effort was worthwhile as the resulting neural network could be run in less 

than 1 sec.  

3. A bi-directional methodology was developed by combining the neural networks 

with a genetic algorithm to obtain multiple combinations of welding process parameters 

such as arc current, voltage and welding speed to obtain a specific weld pool geometry. 

(a) Because of the use of neural networks in place of the numerical transport phenomena 

based model, the calculations could be done in a few minutes. (b) Fairly diverse 

combinations of welding process parameters could be obtained, each of which gave the 

same weld pool geometry. (c) This accomplishment is a milestone in the tailoring of weld 

geometry and other attributes based on scientific principles. 

4. (a) The reliable numerical heat, momentum and solute transport model could 

predict the consumable composition for a given base metal composition to avoid 

liquation cracking in aluminum alloy GMA welds. (b) During GTA welding of stainless 

steel plates having different sulfur contents, the shifting of the weld bead towards the low 

sulfur side could be predicted by the numerical transport phenomena based model. The 

effect of arc shift on the heat and solute transport was considered for the first time in the 

present study, and this was identified as the main factor governing the weld pool shift.  

 

8.3 Future Work 
Several areas were identified during the present thesis research, which needed 

further investigation. 
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First, as described in Chapter 6, on GTA welding of stainless steel plates with 

different sulfur contents the arc shifts towards the low sulfur side. Furthermore, 

significant undercut is seen in the welds where one of the plates contains very high sulfur. 

No quantitative explanation is available for the reason and the amount of arc shift as well 

as the undercut. The arc shifts towards the side where easily ionized metal ions are 

present in higher amount because these enhance the electrical conductivity of the plasma. 

Emission Spectroscopy of plasma can identify the metal ions and their amount in the 

plasma, and thus, shed some light on the origin of arc shift. Therefore, it would be 

worthwhile to do such measurements in future. Also, to check the validity of the concept 

that the enhancement of conductivity of the plasma by metal ions causes arc shift, similar 

welds can be made by laser welding and compared. Furthermore, the weld pool surface 

was assumed to be flat in the present study. In the future work, more rigorous free surface 

calculations can be conducted to study the undercut in the welds. 

Second, the numerical transport phenomena based model developed in the present 

study was adapted to calculate the non-equilibrium solute distribution during GMA 

welding in Chapter 7, by considering heat and solute intake due to filler metal addition, 

and integrating a non-equilibrium solidification model. For the sake of simplicity, the 

model was applied to study the susceptibility to liquation cracking in a simple system, 

i.e., Al-6.3wt%Cu alloy using different compositions of filler metals. Once the capability 

of the model is demonstrated, in future it can be applied to investigate the susceptibility 

to liquation cracking of other aluminum alloys as well. 

Third, in Chapter 7, an unrealistically high solute content value was calculated at 

the rear end of the GMA weld pool because of a simplifying local equilibrium 

assumption at the boundary. In real welds, because of local redistribution of the solute at 

the microscopic level, the concentration gradient at the rear end is much less steep. The 

local redistribution of solute can be incorporated by using a more rigorous micro-scale 

model as against a macro-scale model in future study. 

Hopefully, various areas for further investigation mentioned above can be studied 

in future work to better understand the influence of solute distribution on the evolution of 

weld pool geometry and the occurrence of weld defects. 
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