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A Genetic Algorithm-Assisted Inverse Convective
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Although heat transfer and fluid flow models have provided significant insight about the welding processes and welded materials, currently they
are not widely used, mainly because of two difficulties. First, the model predictions do not always agree with experiments because the values of
energy absorption efficiency and other parameters cannot be prescribed from scientific principles. Second, the available models are unidirectional
and cannot currently predict welding variables necessary to attain a target weld attribute. Here we provide a rigorous proof that the heat transfer
and fluid flow models can be combined with an appropriate genetic algorithm (GA) to enhance reliability of computational results and achieve
inverse modeling capability. The new capability enables systematic tailoring of weld attributes based on scientific principles. In particular, the
GA-based optimization of arc efficiency, arc radius, effective thermal conductivity, and effective viscosity using a limited volume of experimental
data led to superior weld geometry computations for a wide variety of welding conditions. Furthermore, the inverse model’s ability to calculate
multiple combinations of arc current, voltage, and welding speed needed to achieve a target weld geometry was developed and rigorously tested
by welding experiments.
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1. Introduction

Numerical modeling of heat transfer and fluid flow is
often used for the estimation of temperature fields and
fusion zone geometry in various welding processes [1–4].
Furthermore, the computed thermal cycles have been used
to understand weld metal phase composition [5, 6], grain
structure [7], and weld metal composition changes [8].
However, the numerical heat transfer and fluid flow models
for welding have so far been used mostly as a research tool
[9, 10], rather than as a tool for designing and manufacturing
in the industry.
There are several reasons for the restricted use of

heat transfer and fluid flow modeling in welding at
this time. First, the current numerical models for these
calculations in welding require several input parameters
that cannot be accurately specified based on scientific
principles. For example, the value of arc efficiency varies
significantly with the nature of the material, and the
value of the arc radius depends on welding conditions.
Values of the effective thermal conductivity and effective
viscosity are used to accurately model transport of heat
and momentum in the weld pool. They are properties
of the specific welding system and not inherent physical
properties of the liquid metal [11–16]. The uncertainty in
the values of these parameters affects the quality of the
computed results and jeopardizes close agreement between
the experimental and the computed results. In fact, all
phenomenological computational models of fusion welding
now lack a structural component to achieve closure with
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experimental data. Disagreements between the experimental
and the modeling results are a powerful disincentive for the
widespread use of the computational models. Second, the
available heat transfer and fluid flow models of welding
are unidirectional and cannot currently predict welding
variables to attain a target weld attribute. Therefore, they
cannot now be used to tailor weld attributes. Systematic
tailoring of weld attributes based on scientific principles
still remains an important goal in fabricating reliable welds.
Such tailoring requires inverse modeling capability and can
prevent catastrophic failures of large structures, save life
and property, and is important for both the infrastructure
and our contemporary standard of living.
Here we show that when the convective heat transfer

model is integrated with a genetic algorithm (GA), the
optimum values of the arc efficiency, effective arc radius,
effective thermal conductivity, and effective viscosity can
be determined from a set of known weld dimensions.
Similar efforts by linking classical gradient-based search
techniques with numerical heat transfer and fluid flow model
to identify suitable values of uncertain input parameters
have been reported in the recent past [12–15]. However,
the gradient-based search techniques are not optimum in the
sense that they can be trapped in local minima and require
the objective function and its derivatives to be continuous
within the search space. In contrast, stochastic optimization
techniques, such as the genetic algorithms [17–22] can
overcome these difficulties and are capable of finding the
global solution. Here we show that a convective heat transfer
model when combined with a global search technique such
as GA can identify global optimum values of uncertain
model input variables.
We further show that an integrated heat transfer and

fluid flow model combined with a GA-based optimization
scheme can be used as an inverse model to find various

384

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
e
n
n
s
y
l
v
a
n
i
a
 
S
t
a
t
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
0
:
4
5
 
5
 
M
a
y
 
2
0
0
9



A GA-ASSISTED INVERSE CONVECTIVE HEAT TRANSFER MODEL 385

combinations of welding variables needed to achieve a
target weld pool geometry. A desired weld attribute such as
geometry can be produced using multiple welding variable
sets. The inverse model can be used to calculate alternative
combinations of welding variables to achieve a target weld
geometry. The effectiveness of the approach is checked
by conducting experiments using the computed welding
variables and comparing the geometry produced in each
case with the target weld geometry.
A large body of existing literature involving synthesis

of fluid flow calculations with generic algorithms for the
solution of several problems indicates that the approach
adapted in this article is promising. The reader is refereed
to Ref. [20] for a review of how GA can be utilized in
materials design and processing, and Refs. [12–15] and
[23–25] as examples of how GA can be combined with
fluid flow to solve important problems. Both the genetic
algorithms as well as the numerical heat transfer and
fluid flow calculations are computationally intensive. Only
because of recent advances in computational hardware and
software, the tasks of improving reliability of calculations
and GA-assisted tailoring weld attributes based on scientific
principles can now be undertaken.

2. Heat transfer and fluid flow simulation

The flow of incompressible Newtonian liquid metal in the
weld pool is computed assuming a flat weld pool surface
because the weld pool depression is small for the welding
currents used in this study. The density variation with
temperature is ignored because it is small, except for the
calculation of the buoyancy force following Boussinesq’s
approximation. The weld cross-section does not change with
time except at the beginning and the end of welding and
a quasi-steady state assumption is appropriate except for
the two ends of the welds. A Cartesian co-ordinate system
where the heat source moves at a constant welding speed,
U , in the negative x-direction, is adapted. In the moving
co-ordinate system, the system of momentum conservation
equations can be written as [26]

�
��uiuj�

�xi
= �

�xi

(
�
�uj

�xi

)
− �U

�uj

�x1
− �p

�xj

+ �gj��T − Tr�+ Sj� (1)

In the above equation, � is the density, xi is the distance
along the i = 1� 2, and 3 (same as x, y, and z) orthogonal
directions, u is the velocity in the direction shown by
its subscript, � is the effective viscosity, p is modified
pressure obtained by subtracting hydrostatic pressure from
local pressure, gj is the acceleration due to gravity which
is zero except in the vertical direction (direction 3 or z),
� is the coefficient of volume expansion, T is temperature,
Tr is the reference temperature, and Sj is the source term
given as

Sj = −cm

(
�1− fL�

2

f 3
L + b

)
uj + �J × B�j +

�

�xi

(
�
�ui

�xj

)
� (2)

where fL is the liquid fraction, cm (1�6 × 104 kg/(m3s)) is
a constant that takes into account mushy zone morphology
and b is a constant introduced to avoid division by zero.
The first term on the right-hand side (RHS) represents the
frictional dissipation in the mushy zone according to the
Carman–Kozeny equation for flow through a porous media
[27, 28]. The second term represents the electromagnetic
force field and the calculation of the electromagnetic force
field is discussed in Appendix B. More details are available
in a recent article [29]. The value of the effective viscosity
in Eq. (1) is a property of the specific welding system
and not an inherent property of the liquid metal. Typical
values of effective viscosity are much higher than that of
the molecular viscosity [30]. The higher value is important,
since it allows accurate modeling of the high rates of
transport of momentum in systems with strong fluctuating
velocities that are inevitable in small weld pools with very
strong convection currents. The pressure field was obtained
by solving the following continuity equation simultaneously
with the momentum equation:

���ui�

�xi
= 0� (3)

The total enthalpy H is represented by a sum of sensible
heat h and latent heat content 	H , i.e., H = h+	H , where
h = ∫

CpdT , Cp is the specific heat, 	H = fLL, L is the
latent heat of fusion, and the liquid fraction fL is assumed
to vary linearly with temperature in the mushy zone:

fL =




1 T > TL

T − TS

TL − TS

TS ≤ T ≤ TL

0 T < TS

� (4)

where TL and TS are the liquidus and solidus temperature,
respectively. The steady state transport of heat in the weld
workpiece can be expressed by the following modified
energy equation:

�
��uih�

�xi
= �

�xi

(
k

Cp

�h

�xi

)
− �

��ui	H�

�xi

− �U
�h

�x1
− �U

��	H�

�x1
� (5)

where k is the thermal conductivity. In the liquid region,
the value of the thermal conductivity in Eq. (5) is
taken as the effective thermal conductivity which is a
property of the specific welding system and not an inherent
property of the liquid metal. Typical values of effective
thermal conductivity are much higher than that of the
thermal conductivity of the liquid. The higher value is
important, since it allows accurate modeling of the high
rates of transport of heat in systems with strong fluctuating
velocities that are inevitable in small weld pools with very
strong convection currents. Since the weld is symmetrical
about the weld center line only half of the workpiece
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Figure 1.—A cross-section of the weld showing boundary conditions.

is considered. Figure 1 schematically shows the solution
domain along with the applied boundary conditions. By
balancing tangential (viscous) stresses and surface tension
on the assumed flat surface of the melt, the velocity
boundary conditions for the horizontal components of
velocity are given by Eqs. (6a) and (6b). Furthermore, since
there is no normal velocity on the weld pool surface, the
vertical component of velocity, w is zero as indicated in
Eq. (6c):

�
�u

�z
= fL

d


dT

�T

�x
(6a)

�
�v

�z
= fL

d


dT

�T

�y
(6b)

w = 0 (6c)

where u, v, and w are the velocity components along the
x, y, and z directions, respectively, and d
/dT is the
temperature coefficient of surface tension. As shown in
Eq. (6), the u and v velocities are determined from the
Marangoni effect. The w velocity is equal to zero since
there is no flow of liquid metal perpendicular to the pool
top surface. The heat flux at the top surface is given as

k
�T

�z
= dQ�

�r2b
exp

(
−d�x2 + y2�

r2b

)

− �
(
T 4 − T 4

a

)− hc�T − Ta�� (7)

where rb is the arc radius, d is the arc power distribution
factor, Q is the total arc power, � is the arc efficiency, 
is the Stefan–Boltzmann constant, hc is the heat transfer
coefficient, and Ta is the ambient temperature. The first
term on the right-hand side is the heat input from the
heat source, defined by a Gaussian heat distribution. The
second and third terms represent the heat loss by radiation
and convection, respectively. The boundary conditions are
defined as zero flux across the symmetric surface (i.e., at
y = 0) as

�u

�y
= 0 (8a)

v = 0 (8b)

�w

�y
= 0 (8c)

�h

�y
= 0� (9)

At all other surfaces, temperatures are set at ambient
temperature, and all velocities are set to zero.
The governing equations are discretized using the control

volume method in the following form [26]

aP�P =∑
nb

�anb�nb�+ SU	V � (10)

where subscript P represents a given grid point, while
subscript nb represents the neighbors of the given grid point
P, � is a general variable such as velocity or enthalpy,
a is the coefficient calculated based on the power law
scheme, and 	V is the control volume. The coefficient aP

is defined as

aP =∑
nb

anb − SP	V � (11)

The terms SU and SP are used in the source term
linearization as

S = SU + SP�P (12)

and solved by a Gaussian elimination technique known
as tridiagonal matrix algorithm (TDMA) [26]. Scalar grid
points are located at the center of each control volume,
whereas the velocity components are staggered with respect
to scalar locations to achieve improved stability and
convergence of numerical calculations. The discretized
equations are solved using SIMPLE algorithm [26] using
constant thermophysical properties to make the calculations
tractable.
Two convergence criteria are used, i.e., residuals and

heat balance. The residuals for velocities and enthalpy are
defined as

R =
∑

domain

∣∣∣∑nb �anb�nb�+SU	V

aP
− �P

∣∣∣∑
domain ��P �

� (13)

The residual values should be usually very small (typically
10−4� when a converged solution is obtained. The following
overall heat balance check provides another criterion for the
convergence of the solution:

� =
∣∣∣∣net heat inputtotal heat out

∣∣∣∣ � (14)

Convergence is assumed when R ≤ 10−4 and 0�99 ≤ � ≤
1�01. More strict convergence criteria do not change the
final results but increase computational time.
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3. A GA-assisted optimization procedure

GA is utilized for two specific tasks here. First, it is
used for determining the values of four uncertain input
parameters, arc efficiency, arc radius, effective thermal
conductivity, and effective viscosity that are inputs to the
heat transfer and fluid flow model. These parameters cannot
be specified based on fundamental principles, and yet their
values affect the computed temperature and velocity fields
from which the weld geometry is calculated. For this
purpose, a GA is used to determine the optimum values
of these parameters by using the forward convective heat
transfer model and a set of four experimentally determined
weld geometries for four welding conditions (marked by ∗
in Table 1). Because the procedure involves closure with
the experimental data, the calculations of the optimized
values of the parameters lead to better predictions from
the forward convective heat transfer model. Second, a GA-
based optimization scheme can be used with the forward
heat transfer and fluid flow model to achieve an inverse
modeling capability, i.e., to find various combinations of
welding variables needed to achieve a target weld pool
geometry.
A parent-centric recombination (PCX)-based generalized

generation gap (G3) real number GA was used to obtain the
optimized values of the four unknown variables indicated
before. A suitable objective function, which is sensitive
to the unknown variables, is required for the calculations.
The PCX G3 model uses probability distributions of the
selected old individuals (parents) for the generation of new
individuals (offspring) and the subsequent selection of the
most potential offspring in an iterative manner. This GA
is selected for its fast convergence rate and its ability
to provide multiple solutions where such solutions are
meaningful [18, 19].
The objective function, O�f�, is defined as the sum of the

squared error between the computed and the corresponding
measured values of weld width and penetration as

O�f� =
M∑

m=1

{(
wc

m − wobs
m

wobs
m

)2

+
(
pc
m − pobs

m

pobs
m

)2
}

=
M∑

m=1

{
�w∗

m − 1�2 + �p∗
m − 1�2

}
� (15)

where pc
m, w

c
m, p

obs
m , and wobs

m refer, respectively, to the
computed values of weld penetration and width, and their
corresponding measured values for mth welding condition.
The terms p∗

m and w∗
m are nondimensional and indicate the

extent of over or under-prediction of weld penetration and
width, respectively. The subscript m refers to a specific
welding condition in a series of M number of total welds.
In the first set of optimization calculations, the term, f , in
Eq. (15) refers to a set of four given unknown parameters
as

�f � ≡ �f1 f2 f3 f4� ≡ �� r∗ k∗ �∗�

≡
{
�

rb
er

keff

kS

�

�fl

}
� (16)

In Eq. (16), er , kS , �fl, keff and �, respectively, refer
to electrode radius (∼1�0mm), thermal conductivity of
solid material at room temperature, viscosity of molten
iron at 1823K, effective thermal conductivity and effective
viscosity of liquid metal. All unknown parameters included
in f are dimensionless. The data used in the calculations are
given in Table 2. In the second optimization calculations,
the term, f , in Eq. (15) refers to a set of three unknown
process variables that can yield a target weld dimension as

�f � ≡ �f1 f2 f3� =
{

I

Imn

V

Vmn

v

vmx

}
= �I∗ V ∗ v∗� � (17)

where I and Imn refer, respectively, to the target welding
current and the minimum value of current in a prescribed
range. Similarly, V and Vmn, and v and vmx refer to the
target welding voltage and the minimum value of voltage,
and target weld velocity and the maximum value for weld
velocity, respectively.
The optimization process starts with an initial population

containing a number of individuals generated randomly
considering the specified range of each of the variables,
which are being optimized. Next, the values of O�f� are
computed for all the M observations corresponding to each
individual that evidently requires a number of numerical
heat transfer and fluid flow calculations. The best individual
is decided by the fitness value that is equivalent to the
minimum value of O�f�. Next, a second population set of
three individuals is created consisting of the best individual
and two more from the initial population set. The second
population set yields two offspring using the PCX operator.
A third subsequent population set is created next consisting
of the two offspring and two individuals selected randomly
from the initial population set. These four individuals in
the third population are ranked based on the increasing
order of their corresponding values of O�f�. The first two
individuals in the rank replace two individuals in the second
population set and also in the initial population set in
a random manner, thereby enriching the later with good
individuals. The procedure explained above is repeated till
the convergence criteria, i.e., a single or a multiple set
of individuals are achieved with corresponding value(s)
of O�f� that is (are) lesser than the specified minimum
acceptable value of O�f�. After the first iteration, the values
of O�f� are calculated only for the two new individuals
generated from the second population set. A further detailed
description of the PCX G3 GA optimization algorithm
and the mathematical expressions are discussed in the
Appendix A.

4. Experiments

A set of eight autogenousweldsweremade in 3.0mm thick
austenitic stainless steel (SS304) plates using an AC/DC gas
tungsten arc (GTA) welding power source in direct current
electrode negative (DCEN) polarity. A 2% thoriated tungsten
electrode of 2mm diameter and 45� tip angle is used for all
the welds. The electrode is positioned normal to the work
piece with a constant arc length of 3mm. Table 1 shows
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Table 1.—Welding variables and experimentally measured weld pool
dimensions.

Data set Current Voltage Weld velocity Weld width Weld penetration
index (A) (V) (mm/s) (mm) (mm)

∗1 120 11.6 5.0 4.51 1.24
∗2 140 11.0 5.0 4.71 1.36
3 180 12.0 5.0 6.10 1.91

∗4 140 11.2 7.0 4.47 1.23
5 180 12.6 7.0 4.81 1.63

∗6 200 13.8 7.0 6.11 1.83
7 180 12.3 9.0 4.78 1.36
8 200 14.3 9.0 5.42 1.62

the weld pool dimensions and the corresponding welding
conditions for all the eight sample welds. The values of
welding current, voltage, and the welding speed for the eight
sample welds are chosen based on a set of trial-and-error
experiments with a target to have sufficient weld penetration
in each case without any burn-through.

5. Results and discussion

Figures 2 and 3 depict the sensitivity of the computed
weld pool dimensions on the four uncertain parameters in

nondimensional form, e.g., arc efficiency ���, arc radius
�r∗�, effective thermal conductivity �k∗�, and effective
viscosity ��∗�. The computed weld pool width and
penetration are represented in nondimensional form as w∗

m
and p∗

m, respectively. Thus, a value of one for both w∗
m and

p∗
m indicates good agreement between the computed and

the measured weld dimensions while values higher or lower
than one indicate higher or lower than the experimental
value, respectively. Figures 2(a) and (b) show the effect of
� on w∗

m and p∗
m for all eight welding conditions shown in

Table 1. As the value of � increases, the values of both w∗
m

and p∗
m increase because of higher heat input as shown in the

figures. A comparison between Figs. 2(a) and (b) indicates
that w∗

m increases at a faster rate than p∗
m with �. More heat

is readily distributed by Marangoni convection on the weld
pool surface and the weld width increases. Figures 2(a) and
(b) also indicate that values of w∗

m tend to be one at � ∼ 0�50
for several welding conditions while values of p∗

m tend to
be one over a wide range of � (0�50 ∼ 0�80) for several
other welding conditions.
Figures 2(c) and (d) show the influence of r∗ on w∗

m and
p∗
m. It is observed that with increase in r∗, the value of w∗

m
increases slightly while that of p∗

m decreases. An increase in
r∗ indicates an increase in the arc radius and a decrease in

Figure 2.—Sensitivity of the computed values of (a) w∗
m on �; (b) p∗

m on �; (c) w∗
m on r∗; and (d) p∗

m on r∗ for all eight welding conditions in Table 1.
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Figure 3.—Sensitivity of the computed values of (a) w∗
m on k∗; (b) p∗

m on k∗; (c) w∗
m on �∗; and (d) p∗

m on �∗ for all eight welding conditions in Table 1.

power density. Thus, for a given input power, an increase
in r∗ leads to somewhat higher values of w∗

m and smaller
values of p∗

m, since the reduced arc power density decreases
the peak temperature and heat transport in the thickness
direction. Nevertheless, Figs. 2(c) and (d) indicate that both
w∗

m and p∗
m tend to improve when r∗ is close to 1.5.

Figure 3 shows the effects of effective thermal
conductivity and effective viscosity on the computed weld
dimensions. Figures 3(a) and (b) show that an increase
in the value of k∗ reduces w∗

m and increases p∗
m. High

values of k∗ reduce the spatial gradient of temperature and
tend to equalize the rate of conduction heat transfer in all
directions. The work piece is smaller in the thickness than
the other two dimensions. Thus, with the increase in k∗,
the effective rate of conduction heat transfer is enhanced
in the thickness direction yielding greater computed values
of p∗

m. However, higher values of k∗ reduce the surface
temperature gradient and w∗

m. Figures 3(c) and (d) depict a
similar influence of �∗ on computed values of w∗

m and p∗
m.

An increase in �∗ reduces velocities, impedes convective
transport of heat along the free surface of the weld pool and
reduces w∗

m. The computed peak temperature is increased
which increases heat transport in the depth direction and p∗

m.

Figures 3(c) and (d) also show that the computed weld pool
dimensions become somewhat insensitive at higher values
of �∗. Furthermore, Figs. 3(a)–(d) show that the computed
weld pool dimensions are more sensitive to the values of
effective thermal conductivity than the values of effective
viscosity.
Figures 2 and 3 indicate that optimization of the values

of the four uncertain parameters for the eight welding
conditions in Table 1 cannot be achieved graphically.
Therefore, a GA-based global optimization scheme is used
here. The optimization starts with randomly generated initial
population and each individual consists of four values
of uncertain parameters, e.g., �, r∗, k∗, and �∗ within
a specified range of each of these parameters. Table 3
presents these ranges, which are primarily decided from
the values of these parameters reported in the literature
for similar welding process [12, 13, 31–33]. Only four
welding conditions and the corresponding weld dimensions,
indicated by ∗ in Table 1 are used for the optimization of
the four uncertain parameters.
Figure 4 shows the distribution of the initially generated

random populations of one hundred sets of four uncertain
parameters ��, r∗, k∗, and �∗� used in the calculations.
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Table 2.—Physical properties of SS304 used in the calculation.

Parameters Units Value

Density of liquid metal kgm−3 7�2× 103

Molecular viscosity kgm−1 s−1 6�7× 10−3

Solidus temperature K 1697
Liquidus temperature K 1727
Specific heat of solid Jkg−1 K−1 711.8
Specific heat of liquid Jkg−1 K−1 837.4
Enthalpy of solid at melting point Jkg−1 1�20× 106

Enthalpy of liquid at melting point Jkg−1 1�26× 106

Thermal conductivity of solid Jm−1 s−1 K−1 19.26
Temperature coefficient of surface tension Nm−1 K−1 −0�43× 10−3

Magnetic permeability NA−2 1�26× 10−6

Coefficient of thermal expansion K−1 1�96× 10−5

Table 3.—Range of unknown parameters and their optimized value.

Uncertain parameters Range Optimum value

� 0.5–0.8 0.53
r∗ 1.5–2.5 1.95
k∗ 1.0–15.0 12.74
�∗ 1.0–15.0 10.22

Figure 5(a) shows the distribution of the computed values
of objective function, O�f�, for the initial populations as a
function of arc characteristics, i.e., � and r∗. The multiple
peaks in Fig. 5(a) for different sets of values of variables
indicate that multiple solutions may exist, since low
values of the objective function indicate potential solutions.
Figure 5(a) further demonstrates that a combination of either
low values of r∗ �1�5 ∼ 2�0� and � �0�50 ∼ 0�56� or high
values of r∗ �2�0 ∼ 2�4� and � �0�57 ∼ 0�65� tend to yield
low values of O�f�. Figure 5(b) describes the distribution
of computed values of O�f� for the initial population as a
function of weld pool material properties, e.g., k∗ and �∗.
Figure 5(b) shows that the computed values of O�f� are
low for high values of k∗ �7�0 ∼ 14�0� and �∗ �9�0 ∼ 15�0�.
Figures 6(a) and (b) show the progress in the computed

values of O�f� after ten iterations (generations). It is
observed that considerable improvement of O�f� occurred
for r∗, �, k∗, and �∗ in the ranges of 1�5 ∼ 2�0, 0�50 ∼
0�60, 10�0 ∼ 14�0, and 10�0 ∼ 14�0, respectively. The
corresponding values of O�f� as a function of k∗ and

Figure 4.—Randomly generated initial populations of four uncertain
parameters within the specified ranges shown in Table 3.

Figure 5.—(a) Distribution of O�f� as a function of � and r∗ corresponding
to the initial population; (b) Distribution of O�f� as a function of k∗ and �∗

corresponding to the initial population.

�∗ after tenth generation are also shown in Fig. 6(b).
Figures 6(c) and (d) show that a global optimum solution
seems to have been achieved after the thirteenth generation
with O�f� = 4�9 × 10−4 since more iterations did not
reduce the objective function. The values of �, r∗, k∗,
and �∗ are 0.53, 1.95, 12.74, and 10.22, respectively,
for the minimum value of O�f�. Typical values of arc
efficiency in GTA welding process have been reported
in the range of 0.35 to 0.86 in the literature [34],
and the optimum value of � is within this range. The
optimum value of 1.95mm corresponding to arc radius
is justifiable for a tungsten electrode of 2.0mm diameter
and 45� tip angle. Considering the 3.0mm arc length for
all the experiments, and 60� incident angle of the arc
normal to the work piece [34] the effective arc radius is
approximately calculated as 1.98mmwhich agrees well with
the estimated optimum value (∼1.95mm). The optimum
values of effective thermal conductivity and viscosity
are 245.4Wm−1 K−1 and 0.07kgm−1 s−1, respectively. An
enhancement of 5 to 20 times in the values of effective
thermal conductivity and viscosity over their corresponding
molecular values are generally used to realistically account
for the convective heat transport in small weld pools [9, 12–
15, 35, 36]. In addition, the effective thermal conductivity
and effective viscosity were found to be in the ranges of
167�5 ∼ 504Wm−1 K−1 and 0.06 to 0.14Pa.s, respectively,
for autogenous laser welding [35, 36]. The optimized values
of the effective thermal conductivity and viscosity obtained
in this work using GA are within these ranges.
Figure 7 shows a comparison of the computed weld

dimensions using the optimum set of uncertain parameters
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A GA-ASSISTED INVERSE CONVECTIVE HEAT TRANSFER MODEL 391

Figure 6.—Progress of O�f� with generations as a function of uncertain parameters: (a) distribution of O�f� as a function of � and r∗ after tenth generation;
(b) distribution of O�f� as a function of k∗ and �∗ after tenth generation; (c) distribution of O�f� as a function of � and r∗ after thirteenth generation; and (d)
distribution of O�f� as a function of k∗ and �∗ after thirteen generation.

Figure 7.—Comparison of experimentally measured and the corresponding
calculated weld pool dimensions computed using optimum set of uncertain
parameters.

with the corresponding experimentally measured values
for all eight data sets in Table 1. Out of the eight data
sets, four were not used for optimization calculations. A
fair agreement between the computed and the measured
weld dimensions for all the eight data sets indicate
the effectiveness of the GA-based optimization scheme.
Figure 8 shows the computed temperature and velocity fields
for the data set 1 in Table 1. The convective motion of
liquid metal in the weld pool is mainly driven by the surface
tension and electromagnetic forces and, to a much lesser
extent, the buoyancy force. Since the temperature coefficient
of surface tension has a negative value, the surface tension
force drives the liquid metal from the middle of the weld
pool to its periphery at the top surface. The maximum

Figure 8.—Computed temperature (in K) and velocity fields corresponding to
the welding conditions of data set index 1 in Table 1 calculated using optimum
set of uncertain parameters presented in Table 3.

magnitude of velocity was approximately 115mm/s. In the
weld pool, the relative importance of heat transport by
convection and conduction can be estimated from the Peclet
number:

Pe = �uCpLC

keff
� (18)

where u is the maximum velocity along the top surface
of weld pool, � the density, Cp the specific heat, keff the
effective thermal conductivity of the liquid metal, and LC

is the characteristic length. The computed values of Peclet
number corresponding to the eight data sets in Table 1
are shown in Table 4. The computed Peclet numbers were
much higher than one for all the eight welding conditions
indicating the importance of convective heat transfer within
the weld pool. In Fig. 8, the region encompassed by the
1697K isotherm confirms to final weld pool shape and
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Table 4.—Computed values of Peclet number and non-dimensional heat input.

Data set Current Voltage Velocity Computed
index (A) (V) (mm/s) Peclet no. NHI

1 120 11.6 5.0 6.3 1.39
2 140 11.0 5.0 8.2 1.53
3 180 12.0 5.0 17.1 2.15
4 140 11.2 7.0 7.2 1.11
5 180 12.6 7.0 16.2 1.61
6 200 13.8 7.0 23.9 1.96
7 180 12.3 9.0 14.4 1.22
8 200 14.3 9.0 22.7 1.58

size, and its intercepts along x, y, and z axes represent the
weld length, width, and penetration, respectively. Figure 9
shows the transverse cross-section of the computed weld
dimensions (on the right) and the actual weld macrographs
(on the left) for four welding conditions. Good agreement
between the measured and the corresponding computed
weld pool shapes is achieved in all cases.
In order to compare welds for a wide range of welding

conditions, a nondimensional heat input index (NHI� is
defined as [12, 13]

NHI =
Q�

�r2eff U

�CP �TL − Ta�+ �L
� (19)

where Q is the arc power (W), � is the arc efficiency,
reff is the effective arc radius (m), U is the weld velocity
(ms−1�, CP is the specific heat of solid metal (Jkg−1K−1�,
� is the density (kg ·m−3�, and TL and Ta are the liquidus
and ambient temperature (K), respectively. The numerator
in Eq. (19) represents the effective energy absorbed by the
work piece material per unit volume, while the denominator
indicates the energy required to melt unit volume of work
piece material from ambient temperature. The symbol NHI

embodies a combined influence of the welding process
conditions and the material properties for the melting and
the formation of weld pool. The computed value of NHI for
the present eight data sets are in the range of 1.11 to 2.15
as shown in Table 4. For a given material, high value of
weld pool dimensions are linked to high values of NHI . The
use of a single optimum set of �, r∗, k∗, and �∗ to predict
all the weld pool dimensions with reasonable accuracy
corresponding to different welding conditions over this
wide range of NHI show the effectiveness of the integrated
optimization and phenomenological heat transfer and fluid
flow modeling.
After the uncertain parameters are optimized by GA, the

integrated GA and the heat transfer and fluid flow model
is next utilized to compute the alternative set of welding
variables to attain a target weld geometry. Furthermore,
the computed welding variable sets are then tested by
conducting further experiments to examine the effectiveness
of the procedure. The weld dimensions corresponding to
the data set # 4 (Table 1) is chosen as the target geometry.
The current, voltage, and weld velocity are considered as
the main welding variables, and the goal is to determine
multiple combinations of these three parameters, all of
which can lead to the target weld geometry. To start the
selection of multiple combinations of welding variables,
it is first necessary to set a realistic range for each. This
range is decided based on the experiences gathered during
in-house experimental work, and the results reported in the
literature [31, 32]. The feasible ranges of welding current,
voltage, and velocity are considered as 100–200A, 9–15V,
and 4–10mm/s, respectively.
Figure 10 shows the randomly generated and diversely

distributed initial population containing one hundred
individuals each of which contains a set of values for
the current, voltage, and velocity within their respective
specified ranges in the nondimensional form. The minimum
current (Imn = 100A), the minimum voltage (Vmn =

Figure 9.—Comparison of measured weld macrographs and the corresponding computed weld pool profiles for (a) data set index 1; (b) data set index 2; (c) data
set index 6; and (d) data set index 7 in Table 1. The computations are performed using optimum values of uncertain parameters presented in Table 3.
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Figure 10.—Distribution of initially generated random populations each of
which consists of a value of weld current, voltage, and weld velocity for
estimation of multiple sets of welding variables to achieve a target weld
geometry indicated in data set # 4 in Table 1.

9V), and the maximum weld velocity (vmx = 10mm/s)
in their respective specified ranges are considered as
references for nondimensionalization of the corresponding
variables. Figure 11(a) depicts the distribution of the
objective function, O�f�, as a function of nondimensional
welding current �I∗� and nondimensional weld velocity �v∗�
corresponding to the initial population. It is noteworthy
that computations of O�f� now requires running of
the convective heat transfer model for all the hundred
individuals in the initial population and compare the

Figure 11.—(a) Distribution of O�f� as a function of weld current and
weld velocity corresponding to initial population described in Fig. 10; (b)
distribution of O�f� as a function of weld current and weld velocity after tenth
generation.

computed weld dimensions with the measured values
corresponding to the data set # 4 in Table 1. Thus, the
parameter M in Eq. (15) equals to one and corresponds
to the data set # 4. Small values of O�f� in the range
between 0.0 to 0.2 in Fig. 11(a) favor the existence
of multiple combinations of process parameters that can
possibly yield the target weld dimensions. Figure 11(b)
depicts the distribution of O�f� as a function of
nondimensional welding current �I∗� and weld velocity
�v∗� after tenth generations. About 10 sets of process
parameter combinations achieved O�f� even lower than
0.03. Figure 12 depicts eight optimized combinations of
nondimensional welding current �I∗�, voltage �V ∗�, and
weld velocity �v∗� obtained after fifteenth generations. Each
of these variable combinations had values of O�f� smaller
than 0.005. The actual values ofO�f� corresponding to each
of these eight process parameter combinations are presented
in Table 5. The minimum value of O�f� after fifteen
generation is 1�0× 10−4 and corresponds to welding current,
voltage, and weld velocity of 106.1A, 12.5V, and 4.8mm/s,
respectively. The eight possible solution sets are distributed
throughout the entire solution space (Fig. 12) indicating
the existence of multiple paths to attain the same weld
geometry. The diversity of the multiple solution sets is also
observed in Table 5 that cover the welding current ranging
from 106 to 167A, voltage from 9.8 to 14.4V, and weld
velocity from 4.3 to 9.6mm/s. The weld pool dimensions
corresponding to each individual solution sets are shown in
Table 5. The computed values of nondimensional heat index
�NHI� had values between 1.1 to 1.4 for the eight solutions
given in Table 5. The value of NHI is 1.1 corresponding to
the actual experimental condition (data set # 4 in Table 1)
of the target weld geometry. Since the calculation procedure
of NHI is independent of weld pool dimensions, the small
range of values of NHI for all the eight solutions indicates
a common feature among the diverse solutions.
Figure 13(a) shows the target weld geometry for which

the welding conditions and the weld dimensions are shown
in data set index 4 of Table 1. Figures 13(b)–(i) refer to
the weld geometries obtained by conducting experiments
using welding conditions calculated by GA and presented
in Table 5 as solution sets 1 to 8, respectively. Table 5

Figure 12.—Distribution of the finally selected eight multiple solutions sets
to achieve the target weld geometry indicated in data set # 4 in Table 1.
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Table 5.—Current, voltage and welding velocity combinations computed using GA. The calculated and the experimental values of
weld dimensions are indicated by “cal” and the “exp,” respectively.

Individual Current Voltage Velocity Width (mm) Penetration (mm)

solution set (A) (V) (mm/s) O�f� cal exp cal exp NHI

1 133.98 9.77 4.31 0.0004 4.54 4.81 1.24 1.20 1.41
2 140.35 11.54 7.13 0.0007 4.57 4.89 1.24 1.21 1.13
3 134.77 10.56 5.10 0.0015 4.60 4.78 1.25 1.27 1.39
4 163.03 10.33 9.65 0.0049 4.34 4.60 1.18 1.22 1.07
5 116.96 14.38 8.16 0.0003 4.53 4.23 1.23 1.19 1.13
6 149.05 12.58 8.98 0.0037 4.63 4.90 1.28 1.30 1.14
7 106.09 12.47 4.82 0.0001 4.45 4.26 1.23 1.21 1.37
8 166.54 10.48 8.57 0.0005 4.55 4.65 1.24 1.25 1.11

also lists the dimensions of the welds measured in each
case. The optimized welding variables in solution # 2 in
Table 5 is almost the same as the welding variables in data
set # 4 in Table 1, indicating effectiveness of the inverse
modeling. Furthermore, the depth of penetration and width
of all the welds presented in Fig. 13 and Table 5 do not
differ more than 5% from the corresponding target weld
dimensions. This similarity in geometry is counterintuitive
because the welding variables were very different for the
different solutions. For example, the current varied between
106 to 167A, voltage varied from 9.8 to 14.4V, and welding
speed ranged from 4.3 to 9.6mm/s in the solutions as shown
in Table 5. The good agreement between the computed and

the corresponding measured weld macrographs demonstrate
the effectiveness of the GA-assisted convective weld pool
model to find multiple welding variable sets to attain a
target weld geometry by inverse modeling. In particular, the
approach presented here also shows a promise that complex
weld pool models can find greater use in actual industrial
design because they can be restructured to improve their
reliability and practical utility using GA.

6. Summary and conclusions

A three dimensional convective heat transfer model of
GTA welding of 304 stainless steel is integrated with
a PCX G3 GA-based optimization to improve reliability

Figure 13.—(a) Weld macrograph for the target weld fabricated with parameters listed in Table 1, data set # 4; (b)–(i) refer to the weld geometries obtained by
conducting experiments using welding conditions calculated by GA and presented in Table 5 as solution sets 1–8, respectively.
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and practical utility of the calculations. The computational
reliability was enhanced by GA-based optimization of arc
efficiency, arc radius, effective thermal conductivity, and
effective viscosity using a limited volume of experimental
data which lead to superior performance of weld geometry
computations under a wide variety of welding conditions.
Secondly, the usefulness of the integrated model was
demonstrated by the inverse modeling capability and
demonstrating its effectiveness in tailoring weld geometry
based on scientific principles. In particular, the capability
of the inverse model to calculate multiple combinations of
arc current, voltage, and welding speed to attain a target
weld geometry was developed and rigorously tested. A weld
geometry obtained from a welding experiment was selected
as the target geometry. The inverse model was used to
compute eight sets of welding variable combinations each of
which is expected to lead to the target weld geometry. These
eight welds were fabricated with the computed welding
variable sets obtained from GA to test if the weld geometry
in each case was similar to the target geometry. It was found
that the welding variables computed by GA in one of the
eight very closely matched the welding variables actually
used to fabricate the target weld. In the remaining seven
cases, the experimentally determined geometry agreed well
with the target weld geometry. Several of these welding
variable combinations were different from each other and
were highly counterintuitive. The attainment of the target
weld geometry via the GA-based search and the rigorous
experimental verification of this capability indicate that
it is possible to tailor weld attributes based on scientific
principles using a combination of GA and a heat transfer
and fluid flow model.

Appendix A: PCX G3 real number GA

In order to explain the principle of PCX-operated G3
model in GA [18, 19], an example is considered depicting
the generation of two new individuals (offspring) out of
three individuals (parents) from an initial population. First,
three parents are selected from the initial population such
that one of them corresponds to the lowest value of objective
function. The other two are selected randomly. Considering
the three parents as Pi = �f 1

i f 2
i f 3

i f 4
i � (where i =

1� 3), the arithmetic mean vector of them is calculated as
g = 1

3

∑3
i=1 Pi. Selecting one parent (say, p) at random,

a direction vector, dp, and the mean of the perpendicular
distances between the direction vector and each of the other
two parents, �Dp, are calculated as

dp = Pp − g�
(A.1)

�Dp = 1
2

3∑
i=1�i �=p



∣∣Pi − Pp

∣∣2 −
(
�Pi − Pp� · dp∣∣dp

∣∣
)2



1
2

�

An offspring, yp, is next created as

yp = Pp + ��dp + ��
�DpEp� (A.2)

where yp = �f 1
p f 2

p f 3
p f 4

p � and p = 1� 2 corresponds to
the two new individuals in terms of their vector components.
The second and third terms in RHS of Eq. (A.2) depict the
improvement in the off-spring over successive generations.
The improvement is always directed towards the best fitness
value, i.e., the minimum value of O�f�. The term Ep is
calculated as

Ep = û−
(
�dp�∣∣dp

∣∣ · �dp�∣∣dp

∣∣
)
û (A.3)

and is referred to the orthonormal base that spans the
subspaces perpendicular to dp. In Eq. (A.3), û is the unit
vector along the orthonormal direction. The parameters
�� and �� are zero-mean normally distributed variables
with standard deviations of � and �, respectively.
Figure 14 describes the overall solution scheme that embeds
the numerical heat transfer model within the GA-based
optimization module. The PCX-operated G3 model is used
twice in the overall solution procedure as indicated in
Fig. 14.

Figure 14.—Flow-chart of PCX G3 GA optimization algorithm.
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Appendix B: electromagnetic force field

The Laplace equation for the distribution of electrical
potential in cylindrical co-ordinate system is given by

�2�

�r2
+ ��

r�r
+ �2�

�z2
= 0� (B.1)

The boundary conditions for the potential field inside the
workpiece are:

Radial Boundary: ��h� z� = 0 (B.2)

Bottom:
���r� c�

�z
= 0 (B.3)

Top:
���r� 0�

�z
= f �r� = − IdI

�r2b
exp

(
−r2dI

r2b

)
� (B.4)

where h is the maximum radius, z is the vertical distance
from the origin located at the top surface, c is the thickness
of the workpiece, I is the arc current, rb is the arc radius,
and dI is the arc current distribution factor. The solution for
Eq. (B.1) can be written in the form of a Fourier integral as

��r� z� = I

2�e

∫ 	

0
exp

(
−�2r2b

4dI

)

× J0�r��
cosh���c − z��

sinh��c�
d�� (B.5)

where e is electrical conductivity, and J0 is the Bessel
function of zero order and first kind. Considering the axi-
symmetric condition, the magnetic field components in
radial (i.e., Br ), and vertical directions (i.e., Bz) are assumed
to be zero. Thus, from Ampere’s law,

B� =
�m

r

∫ r

0
rJzdr� (B.6)

where B� is the angular component of the magnetic field,
and �m is the magnetic permeability (1�26× 10−6 H/m). The
radial �Jr� and axial �Jz� components of the current density
vectors can now be obtained from Ohm’s law:

Jz =
I

2�

∫ 	

0
�Jo��r� exp

(−�2r2b /4dI

) sinh���c − z��

sinh��c�
d�

(B.7)

Jr =
I

2�

∫ 	

0
�J1��r� exp

(−�2r2b /4dI

) cosh���c − z��

sinh��c�
d��

(B.8)

where J1 is Bessel function of first order and the first kind.
Substituting Eq. (B.7) into Eq. (B.6), we get

B� =
�mI

2�

∫ 	

0
J1��r� exp

(−�2r2b /4dI

)
× sinh���c − z��

sinh��c�
d�� (B.9)

The current density, J, and magnetic flux, B, calculated
above in cylindrical coordinates can be transformed to the
Cartesian coordinates using the following expressions:

Jx = Jr
x√

x2 + y2
(B.10a)

Jy = Jr
y√

x2 + y2
(B.10b)

Bx = B�

y√
x2 + y2

(B.10c)

By = −B�

x√
x2 + y2

(B.10d)

Bz = 0�0� (B.10e)

The final expressions for the three components of the
electromagnetic force are given by

Fx = Jy · Bz − Jz · By (B.11a)

Fy = Jz · Bx − Jx · Bz (B.11b)

Fz = Jx · By − Jy · Bx� (B.11c)
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